vy Addison-Wesley Publishing Company GARY B. LITTLE

Exploring
the Apple IIgs

This book is dedicated to my wonderful new daughter,

Adrienne Blair Little

About the Author

Gary B. Little lives in Vancouver, British Columbia. He
is a founding member of Apple’s British Columbia Com-
puter Society and is active in several business organi-
zations that promote and assist soltware developers. He
is a contributing editor for A4 magazine and has written
four other books on how to program Apple computers:
Inside the Apple Ie, Inside the Apple He, Apple
ProDOS: Advanced Features for Programmers, and Mae
Assembly Language: A Guide for Programmers. Gary is
also the developer of the Point-to-Point communications
program and the Binary 11 file format,

Exploring

the Apple IIGgs

GARY B. LITTLE

A
v
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts - Menlo Park, California -
Wokingham, England - Amsterdam -
Tokyo - Madrid - Bogotd -

New York + Don Mills, Ontario -
Bonn - Sydney * Singapore
Santiago « San Juan

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Apple, the Apple logo, AppleTalk, Disk 1, DuoDisk, and ProDOS are registered trademarks
of Apple Computer, Inc. Apple 1Ics, Apple DeskTop Bus, Macintosh, SANE. and Unidisk
are trademarks of Apple Computer, Inc.

The W65C816 data sheet is reprinted with the permission of The Western Design Center,
Inc.

Ensoniq is a trademark of Ensoniq Corporation.

Library of Congress Cataloging-in-Publication Data

Little, Gary B., 1954—
Exploring the Apple Ilcs.

Bibliography.

Includes index.

L. Apple Lics (Computer) 1. Title. I1. Title:
Exploring the Apple Ilcs,
QAT6.5.A662351.55 1987 004. 165 87-11541
ISBN 0-201-15539-7

Copyright © 1957 Gary B. Little

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronie, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Addison-Wesley. Printed in
the United States of America. Published simultaneously in Canada.

Cover design by Doliber Skeffington Design
Text design by Kenneth J. Wilson
Set in 10pt Caledonia by DEKR Corporation

ABCDEFGHIJ-HA-8987
First printing, August, 1987

PREFACE

The Apple [1Gs™ computer is the most powerful member of the Apple® 11 family
of microcomputers. Not surprisingly, it is also the most complex and the most
difficult to program.

The purpose of this book is to show vou how to develop software that takes
advantage of the unique features of the Gs without forcing vou to sift through the
thousands of pages of technical information available from Apple Computer, Ine.
The major new features I will cover include the enhanced operating system
{ProDOS® 16}, a powerful sound system, two super high-resolution color graphics
display modes, and hundreds of standard subroutines, called functions, a program
can use to perform various operations.

The Gs operating system groups related software functions into data structures
called tool sets. Two examples of tool sets are the Memory Manager (which controls
memory usage) and the Event Manager (which deals with user input activity). The
G5 also has several tool sets you can use to develop programs that take advantage
of the desktop environment popularized by the Macintosh™ computer; the main
ones are QuickDraw II (for drawing on the graphics screen), the Menu Manager
{for implementing pull-down menus), the Window Manager (for handling multiple
windows on the graphics screen), and the Dialog Manager (for handling user selec-
tions).

All the commonly-used tool sets are analvzed in this book. For convenience, tool
set reference tables are included at the end of every chapter that reviews a tool set.
For each function, these tables contain the function number and the list of param-
eters the function expects to receive when called.

The programming examples in this book were written in 65816 assembly lan-
guage. (There is a good reason for this: high-level language compilers for C, Pascal,
and BASIC were not available when this book was written.) As a result, you will
find this book more valuable if yvou have assembly language experience. Even if you
do not, however, the descriptions ol what the tool set functions do and how they
interact with one another will be useful. Converting assembly-langauge function
calls to high-level langauge commands should not he difficult.

I give an overview of 65816 assembly language programming techniques in
chapter 2. If vou are a total stranger to assembly language programming, 1 suggest
vou first read a book totally devoted to the topic. The best are 65816/65802 Assembly
Language Programming by Michael Fischer and Programming the 65816 by David
Eves and Ron Lichty.

As you will quickly discover while reading this book, the Gs supports most of the
hardware and software features of the Apple® Ile and Ilc computers. These features

have been exhaustively covered in three of my earlier books, Inside the Apple Ile,
Inside the Apple Ilc, and Apple ProDOS: Advanced Features for Programmers. The
latter book describes what is now called the ProDOS® 8 operating system.

It would not have been possible to write a book like this so soon after the
introduction of the s without the technical support of Apple Computer, Inc. My
thanks to all those at Apple who put up with my many telephone calls and electronic
letters. Those who were particularly helpful were Rob Moore, Jim Merritt, and
Steve Glass.

Gary B. Little
Vancouver, British Columbia, Canada
June 1987

vi

CONTENTS

Preface v

CHAPTER 1: Exploring the Apple llcs 1

Microprocessor 1

Memory 2

1/0 Interfaces 3
RCA Mini Headphone Jack 5 + Serial Ports 5 + Game 1/O Port 6
 Disk-Drive Port 6 + Analog RGB Video Port 7 + Compaosite Color
Video Port 7 + Apple Desktop Bus Port 7

Real-time Clock/Calendar §

Video Display Modes 9

Sound 10

Operating System Software 10

Development Software 11

Credits 12

CHAPTER 2: Programming the 65816 Microprocessor 13

The 63816 Memory Space 14
Direct Page 14 - Stack 15

The 65816 Registers 15
Processor Status Register 16 + Accumulator 20 - Index Registers 20
- Stack Pointer 21 - Direct Page Register 21 - Data Bank
Register 21 + Program Bank Register 21 + Program Counter 21

The 63816 Instructions 22
Load/Store Instructions 22 -+ Push Instructions 23 - Pull
Instructions 24 - Inter-register Transfer Instructions 24 - Exchange
Instructions 25 - Block Move Instructions 25 - Flow-of-control
Instructions 25 - Arithmetic Instructions 27 - Logical Instructions 28
- Bit-manipulation Instructions 28 - Shift-and-rotate Instructions 29 -
System-control Instructions 29

The 65816 Addressing Modes 30
Implied 30 + Accumulator 32 - Immediate 32 + Program Counter
Relative 33 - Program Counter Relative Long 33 - Stack 33 - Stack
Relative 33 - Stack Relative Indirect Indexed with Y 34 - Block

vil

Move 34 - Absolute Addressing Modes 35 - Absolute Indexed
Addressing Modes 35 - Indirect Addressing Modes 36

Interrupts 37
The IRQ Hardware Interrupt 38 - Other Hardware Interrupts 39
- Software Interrupts 40

Creating Programs with the Apple Ilcs Programmer's Workshop 40
Source Code Format 41 + Local and Global Labels 43 - ProDOS 16
Entry Conditions 43 - Mode Considerations 44 - Numbering
Systems 44 - lsolating the Words in a Long Address 45 - Forcing
Addressing Modes 45 - Data Allocation Directives 46 - Listing
Directives 47 - Creating the Macro File 48 - Creating an Application
with APW 49

Reference Section 50

CHAPTER 3: Using the ¢s Tools 67

Tool Set Summary 68
Tool Locator 68 - Memory Manager 68 + Miscellaneous Tool Set 70
* QuickDraw 11 70 + Desk Manager 70 + Event Manager 70 -
Scheduler 71 - Sound Manager 71 - DeskTop Bus Tool Set 71 -
Floating-Point Numerics (SANE} 71 -+ Integer Math Tool Set 71 -
Text Tool Set 71 - RAM Disk Tool Set 71 + Window Manager 72 -
Menu Manager 72 + Control Manager 72 - System Loader 72 -
QuickDraw Auxiliary Tool Set 72 + Print Manager 72 + LineEdit 72 -
Dialog Manager 73 - Scrap Manager 73 + Standard File Operations
Tool Set 73 - Note Synthesizer 73 + Note Sequencer 73 + Font
Manager 73 - List Manager 73

Using the Tools 73
Data Types Used by Funetions 75 - Tool Set Macros 75

The Tool Locator 77

The Structure of a Tool Set 79

Developing Your Own Tool Set 80
Error Codes 83 - Work Areas 84

A User-defined Tool Set 84

Reference Section 86

CHAPTER 4: Memory Management 101

GS Memory Map 102
Special RAM Areas 102
Banks SE0 and $E1 104 - Banks $00 and $01 106

viii

Expansion RAM 108
The ROM Banks 109
The Memory Manager 110
Attributes 111 - Accessing a Block 114
Memory Manager Functions 115
The Major Functions 115 + The Minor Functions 118
Reference Section 121

CHAPTER 5: Event Management 125

The Event Loop 125
Initializing the Event Manager 126
Event Types 128
Mouse Events 128 - Keyboard Events 129 - Window Events 129
+ Special Events 129
GetNextEvent and the Event Loop 130
The What Field 131 - The Message Field 131 -+ The When Field 132
- The Where Field 132 - The Modifiers Field 132 - The Event
Loop 133

Posting Events 135

Handling Events 136
Mouse-down 138 - Mouse-up 139 + Key-down and Auto-key 140
- Window Update 140 - Window Activate 141

Cursors 141

Clock Functions 144

Reference Section 147

CHAPTER 6: Windows and Graphics 161

The Super High-resolution Graphics Screen 162
Introducing the Window 168
The Window Record 170
Window Manager Start-up and Shut-down Operations 172
Creating a Window 173
NewWindow Parameters 173
The Information Bar Procedure 179
Updating a Window 179
Changing the Properties of a Window 180
Removing a Window from the Desktop 182

ix

Handling Mouse-down Activity in Windows
Drawing in a Window 186
Patterns and Colors 187
Setting Up the Drawing Pen 189
Setting the Pen State 190

Font Characteristics 193

Font Definitions 196
Drawing Characters 199

Text Measuring 201 - Text Color 201
Drawing Lines and Shapes 202

183

+ Transfer Modes for Text 202

Lines 203 + Shapes 203 - Polyvgons 207

Creating an Application with Windows 208
Reference Section 210

CHAPTER 7: Using Pull-down Menus 241

Starting Up and Shutting Down the Menu Manager 242

Creating a Menu 243

ID Numbers 244 - The Appearance of an Item 246 - Kevboard

Equivalents 247 -+ Marking Items 248

Creating the Menu Bar 248
Changing the Name of a Menu 249

Changing Item Attributes 249

Changing the Name 249 - Enabling and Disabling 250 - Inserting
and Deleting 251 - Checking and Marking 251 + Changing the Text

Style 252
Removing Menus 253

User Interaction 254

Using GetNextEvent 254 + Using TaskMaster 255 + Removing Menu

Title Highlighting 255
Color and the Menu Manager 256

Reference Section 257

Starting Up the Dialog Manager 268

Creating Dialog Boxes 269
Modal Dialog Boxes 269

CHAPTER 8: Using Dialog and Alert Boxes 267

Item Types 271
Buttons 273 - Check Boxes 275 - Radio Buttons 275 - Scroll
Bars 275 - User Control Items 276 + Static Text and Long Static
Text 276 - Editable Line 277 - Icons 279 + Pictures 279 - User
Item 279

Disabling Items 250

Adding Items to Dialog Boxes 250

Changing Item Attributes 251
Dealing with Text Items 281 - Reading and Changing the Item
Value 283

Using Dialog Boxes 253
Modal Dialog Boxes 283 - Modeless Dialog Boxes 285

Using Alert Boxes 288

Reference Section 290

CHAPTER 9: All about Desk Accessories 311
Classic Desk Accessories 312
Writing a CDA 312 - Installing a CDA 313

New Desk Accessories 313
Writing an NDA 314 - Installing an NDA 317

Reference Section 317

CHAPTER 10: The ProDOS 16 Operating System 329

Block-structured Devices 330
Directories and Files 330
The Structure of a ProDOS 16 Boot Disk 333
Using ProDOS 16 Commands 334
File-management Commands 337
Creating New Files 337 + Deleting Files 342 -+ Renaming Files 342
- Changing File Attributes 343 + Determining Volume
Characteristics 345 + Manipulating Prefixes 346
File I/O Commands 347
Positions in the File 347 + Reading 348 - Writing to a File 351
Device-management Commands 354
Formatting 355 - Accessing Specific Blocks 356 + Last Device
Accessed 357
Operating-environment Commands 357
Status Commands 357 - The QUIT Command 359

xi

Interrupt-control Commands 360

Standard File Operations 362
SFGetFile 362 - Filter Procedure 364 - Type List 366 - Reply
Record 367 + SFPutFile 367

Reference Section 369

CHAPTER 11: Sound and Music 389
Sound Hardware 389
Sound GLU 390 - Ensoniq DOC 392 « Sound Output 393

The Ensoniq DOC Registers 394
Oscillator Registers 395 + General Registers 398

Sound Manager 399
Accessing the DOC RAM Area 400 - Volume Control 400 + Free-
Form Synthesizer 401 - Low-Level Access to DOC Registers and
DOC RAM 403 - Using Low-Level Subroutines: Digitizing Analog
Input 407

Note Synthesizer 407
Starting Up the Note Synthesizer 408 - Plaving a Note 408 - Turning
Off a Note 414 - Shutting Down the Note Synthesizer 414

Playing a Song 414
Reference Section 416

CHAPTER 12: Using the Text Tool Set 435

Logical Devices and Masks 435

Device Driver Types 436 - Data Masks 437 -
Changing Active Devices 438

Initialization 438
Sending Characters to the Output Device 439
Reading Characters from the Input Device 440
Keyvboard Input 441

Video Output 443
Character Display 443 - MouseText 443 + Cursors 445 - Window
Dimensions 448

Frinter Output 449
The Text Tool Set in Action 449
Reference Section 451

APPENDIX 1: ASCIHI Character Codes 463

Xii

-

APPENDIX 2: The Western Design Center WG5CS16 Data Sheet 471
APPENDIX 3: The Apple [lcs Tool Sets 495

APPENDIX 4: Number-conversion Functions 497
Binary to Hexadecimal 498
Hexadecimal to Binary 499
Binary to Decimal 499
Decimal to Binary 500

APPENDIX 5: ProDOS File Tyvpe Codes 3503

APPENDIX 6: Memory Cards for the Apple les 507

Apple 1IGs Memory Expansion Card 508
Applied Engineering ¢s RAM 508
MDIdeas OctoRAM 509

Orange Micro RamPak 4cs 510

AST Research RamStakPlus 510

Making a Choice 511

APPENDIX 7: Disk Drives for the Apple llcs 513
5%-inch Disk Drives 513
3Ve-inch Disk Drives 514
Using Drives with the Apple Ilcs 514

APPENDIX 5: BResource Material 517
Development Software 517

Macintosh Cross-compilers 518

Reference Books 518
Books for the Apple 1lcs 519 - Books for the Apple Ile and e 520
- Books on 63816 Assembly Language Progamming 520 - Books for
the Macintosh 520

Magazines 521

INDEX 523

xiii

CHAPTER 1

Exploring
the Apple lIgs

On September 15, 19586, Apple Computer, Inc. revealed the Apple IIGs™ computer,
the first new model in the Apple® I1 family since the Apple® Ilc (April, 1984) and
the Apple® Ile (January, 1983) computers. The Gs portion of the name stands for
Graphics and Sound, the two exciting features of the Gs that distinguish it from the
Ile, lle, and, in many ways, from most other microcomputers as well.

Building the Gs was not an easy task for Apple’s engineers because of one critical
design constraint: the ¢s, even with its fancy new sound, graphics, and processing
capabilities, had to be able to run software originally developed for the Ile and Ilc.
Nevertheless, the project was successfully completed. The result is a computer that
runs almost all software available for the 1le or 1lc but that has enough unique new
features to keep programmers and users satisfied for vears to come.

This chapter reviews the important hardware features of the ¢:s while highlighting
the differences between the Gs and the Ile and Ile systems. Also provided is a
cursory look at the new operating svstem software Apple provides with the ¢s. Once
vou are familiar with the overall makeup of the s, vou will quickly recognize its
potential from a programmer’s point of view. Subsequent chapters examine how to
develop software for the cs that takes full advantage of its new features.

MICROPROCESSOR

The Gs uses The Western Design Center W65C816 microprocessor, not the 65C02
used in the Ile and llc. The 65816, as it is more commonly known, is a versatile
device that can operate in an 8-bit emulation mode in which it mimics the operation
of a 65C02 almost exactly, or in a more powerful 16-bit native mode. (See Appendix
2 for a technical description of the 63816.)

The 63816's ability to emulate the 65C02 made it the obvious choice as the
microprocessor for the s, Without this ability to emulate, the s would not be able
to run Ile and Ilc software unless a slow software interpreter or (heaven forbid) the
65C02 were used,

Another important factor in choosing the 65816 was that it also has enough
horsepower to handle rigorous new programming chores, such as managing large
amounts of memory and performing complex color graphics operations. In its native
operating mode, the 65816 supports the following features: 16-bit registers, more
instructions, more addressing modes, and a relocatable direct page and stack. The
65816 also has a 24-bit address bus, so it can directly address a 16-megabyte memory
space.

The 65516 operates at either 1.0 MHz (normal mode) or 2.8 MHz (fast mode) on
the Gs. The default mode is the fast mode, in which programs run about two and
one-half times faster than they do at normal speed. The 65C02 on the Ile or Ilc
runs at only 1.0 MHz, although it is possible to purchase accelerator boards for the
Ile to speed it up by a factor of three or more.

MEMORY

The address space for the 65816 is an enormous 16 megabytes and is directly
addressable (that is, every byte has a unique address). Contrast this with the 65C02,
which has only a 64K address space; additional memory duplicates these addresses
and can be accessed only using relatively complex bank-switching techniques.

Chapter 4 takes a detailed look at how the s makes use of the 16M address
space. In brief, a standard cs has 256K of RAM, expandable to 8M, and 128K of
ROM, expandable to IM. (It also has RAM to support the sound system and the
Control Panel, but this memory is not part of the 65516 address space.) To add
extra memory, vou must insert a memory expansion card in a special peripheral slot
on the s motherboard.

Of the 256K of RAM, the first 128K is roughly equivalent to main and auxiliary
memory on the Ile and Ile. The other 128K is needed to support the operating
system, system monitor, device drivers, and special video display modes.

The 128K ROM space on the ©s contains a great many support programs and
subroutines a programmer can use:

* The same Applesoft® programming language as in the e and Ile

* A System Monitor similar to the one on the Ile and e but with several new
commands

* A Mini-Assembler like the one on the enhanced Ile and Ile, but extended to
support all 65816 instructions and addressing modes

* System diagnostics

* Built-in classic desk accessory programs: Control Panel (for setting the system
configuration) and Alternate Display Mode (for allowing Ile- and Ile-stvle
programs to use page 2 of text)

= Drivers for built-in input/output (O} devices

2 Exploring the Apple lcs

= A driver for the AppleTalk® network

» Soft switches for configuring the system and performing /O operations (these
are actually memory-mapped 1/O locations)

« Tool sets: Tool Locator, Memory Manager, Miscellaneous Tool Set, QuickDraw
11, Sound Manager, Desk Manager, Floating-Point Numerics (SANE™), Apple
DeskTop Bus™ Tool Set, Scheduler, Integer Math Tool Set, Text Tool Set,
Event Manager, and BAM Disk Tool Set

A tool set is made up of several subroutines (or functions), each performing the
same general type of operation. The Memory Manager tool set, for example, contains
several functions for doing such chores as allocating blocks of memory, releasing
blocks, calculating free space, and performing other memory-related operations.
Most of this book deals with how to use tool set functions in your own programs.

O INTERFACES

From an I/O point of view, the Gs combines the best features of the Ile with the
best features of the Ilc. Like the Ile, the Gs contains seven general-purpose pe-
ripheral expansion slots numbered from 1 to 7. As a result, almost any peripheral
board originally designed for the Ile can be used with the Gs as well. The main
exceptions are multifunction cards, such as the Street BusinessCard and the Pro-
metheus Versacard, which simulate the effect of having an I/O device in a particular
slot even though the card plugs into a different slot. (These devices are said to use
phantom slots.)

The s also has a unique eighth slot for memory expansion only. Through it you
can add up to 8 megabytes of RAM memory as well as additional ROM memory.
Although the standard Apple Gs Memory Expansion Card actually holds only 1M
of RAM, other manufacturers sell cards with greater capacities. (See Appendix 6 for
information on available Gs memory expansion cards.)

In addition to expansion slots, the Gs has the same built-in expansion ports as
the 1l¢, plus a few more. Here are the ones that correspond to standard slot numbers:

e Port 1: serial printer port
s Port 2: serial modem port
s Port 3: video port

* Port 4: mouse port (part of the Apple DeskTop Bus™)

1/O Interfaces 3

Photo 1-1: The Back Panel of the Apple Ilcs, Showing the /0 Connectors

* Port 5: disk-drive port (SmartPort)

* Port 6: 5%-inch disk-drive port

* Port 7: AppleTalk (actually uses serial port 1 or 2)

As shown in photo 1-1, the connectors for these ports are located on the back panel
of the cs,

The other major I/O ports are two game control ports, a built-in clock/calendar.
and a sound synthesizer,

It is important to realize that an internal port and its corresponding slot are
mutually exclusive. In other words, you can use only one or the other. It is not
possible to switch between an internal port and a plug-in card without turning the
Gs off and then on again.

To tell the s whether you want to use a slot or a port, yvou must use a built-in
configuration program called the Control Panel. It is an example of a Classic Desk
Accessory (see chapter 9), a utility program vou can switch to even when vou are
using another program.

4 Exploring the Apple I1cs

To bring up the classic desk accessory menu, enter Control-OpenApple-Esc from
the kevhoard. This pops up a list of desk accessories you can use, beginning with
the Control Panel. To activate the Control Panel, use the up- and down-arrow keys
to move the inverse bar over its name, and then press Return. You will then see
the main command menu for the Control Panel. Most of these commands are for
setting global parameters that configure the system the way you want. For example,
there are commands to set the date and time, default video characteristics, and
keyhoard options.

The Slots command is used to set the desired slot/port configuration. Once vou
select it, vou will see a list of slot numbers and an indication of whether a built-in
port or “Your Card” (a card in a slot) is to be active. The default set-up selects
internal ports 1 through 6 and vour card in slot 7. If vou wanted to use a parallel
printer card in slot 1, vou would use the right-arrow key to change the entry for
slot 1 to “Your Card.” The next time you start up the ¢s, the card in slot 1 will be
used instead of serial port 1.

The parameters set up by the Control Panel are stored in a memory area asso-
ciated with the s clock chip (not part of the 65516 address space). This memory
area is nonvolatile (because it is powered by the clock’s battery), so the Gs remem-
bers the Control Panel settings even when the ¢s is turned off.

RCA Mini Headphone Jack

By plugging headphones into the RCA mini headphone jack, vou ean divert sound
from the ©s's on-board speaker to the jack. Although it is a stereophonic jack, the
Gs sound circuitry sends the same output signal to both channels, so you will not
hear true stereophonic sound unless vou add an optional sound card.

Serial Ports

The ©s has two built-in serial interface ports driven by a Zilog 8530 Serial Com-
munications Controller (SCC), the same chip used on the Macintosh™ computer.
By convention, the frst port (port 1) should be used with a serial printer, such as
the ImageWriter® 11, and the second (port 2) should be used with a modem, such
as the Haves Smartmodem. You can also use either port to connect the Gs to an
AppleTalk network; in this case the serial port vou choose behaves like a port 7
device.

The 8330 is not the same as the serial chip used on the Ile and the Apple Super
Serial Card. This means that programs for the 1lc or Super Serial Card that access
serial hardware registers directly will not work on the ¢s without a new device
driver. Most programs that are chip-specific are communications programs. Printing
programs do not usually cause problems, because output goes through the firmware
that controls the serial port; at this level, the serial ports are largely compatible.

1O Interfaces 5

Game /O Port

The game /O port is a nine-pin DB-9 connector used to interface game controllers
such as joysticks, paddles, and push buttons. It is equivalent to a similar port on
the back of the Ile and Ile. With it you can measure the settings of four variable-
resistance devices (such as two X-Y joysticks) and three single-bit switch inputs.

The motherboard of the Gs also has a rectangular 16-pin game connector that is
identical to the one on the Ile. It provides all the electrical signals of the game IO
port as well as four single-bit output annunciator signals for driving indicator lights
or simple relays.

Disk-drive Port

The disk-drive port is similar to the one on the back of the Ile, It is an Apple
SmartPort interface, which means that you can connect to it any device adhering to
the SmartPort hardware and software specifications. This includes 3%-inch drives,
such as the UniDisk™ 3.5 and the Apple 3.5 Drive, and 5%-inch drives, such as
the UniDisk 5.25 and the DuoDisk®,

To add disk drives to the s, all you have to do is daisy-chain them to the
SmartPort in the correct order, (See appendix 7 for information on available Ilcs
disk drives.) The Apple 3.5 Drives must be connected first (two maximum), followed
by any number of UniDisk 3.5 drives, and then followed by any 5Vi-inch drives
(two maximum). Because of power supply limitations. vou should not add more than
two UniDisk 3.5 drives to the chain,

The Gs treats the 5%-inch drives at the end of a SmartPort device chain as port
6 devices, even though the disk-drive port is internally mapped to port 5. This
means that you can boot from the 5%-inch drive with an Applesoft PR#6 command.
If you want to use your 5%s-inch drives with a disk controller card in slot 6 instead,
use the Control Panel Slots command to change the slot 6 entry to “Your Card.”

The Control Panel also lets you choose which disk device you want the ¢s to
hoot from when you turn it on or when vou enter Control-OpenApple-Reset. The
default is “Scan,” which tells the s to look for a drive from slot 7 down to slot 1
and to boot from the first one it finds with a bootable disk. You can also specify a
specific slot number to boot from; do this if vou want to boot directly from the first
3¥z-inch disk in port 5 instead of from a 5%-inch disk in port 6, for example.

Using the Control Panel RAM Disk command, vou can also allocate an area of
memory for use as a RAM disk device. RAM disk memory contains data that is
formatted in the same way as on a real disk. Data is read or written using the same
commands as for a standard drive, but I/O operations are much faster because there
is no waiting for slow-moving mechanical parts. The main drawback of a RAM disk
is that data on the RAM disk disappears when you turn off the power, so you must
transfer it to a real disk before turning off the computer.

If the RAM disk has been properly formatted with all the code necessary for
booting, you may want to assign it as the boot device instead of a real disk drive. If

6 Exploring the Apple llcs

vou do so, the operating system will reload more quickly after a Control-OpenApple-
Reset reboot,

The cs also supports any ROM disk device you might have on a memory expan-
sion card. A ROM disk, like a RAM disk, is fast, but its contents are permanent. In
a typical case, a ROM disk would contain the Gs operating system and any utility
or application programs to which you need instant access.

Analog RGB Video Port

You can connect an analog RGB monitor, such as the AppleColor RGB Monitor, to
the analog RGB video port to view the 4,096 colors the Gs supports in its super
high-resolution graphic display mode. You cannot connect digital RGB monitors to
this port.

Composite Color Video Port

The s also generates an NTSC-compatible composite color video output signal.
The port connector is an RCA phono connector. You can use the NTSC signal to
drive an ordinary monochrome monitor or a composite color monitor.

Apple DeskTop Bus Port

The Apple DeskTop Bus (ADB) is a unique data transmission interface designed to
allow you to connect, in a chain, certain tyvpes of input devices to the ¢s. The two
most common ADB devices are the kevboard and the mouse, which come with the
Gs. The ADB protocol is general enough, however, to work with other pointing
devices, such as trackballs and joysticks. The Gs communicates with any device on
the ADB by sending it commands and listening for responses; communication signals
can be directed to a particular device to avoid interfering with other devices in the
chain.

Connected directly to the ADB is the keyboard. (See photo 1-2). It contains S0
keys, including a 14-key numeric keypad. The layout of keys is almost the same as
the layouts on the Ile and Ile keyboards, but with one important difference: the
Option key (formerly called the Solid-Apple key) is now on the left side of the space
bar, just to the left of the Open-Apple key.

The main new feature of the keyboard is its programmability. By changing Control
Panel parameters, yvou can adjust the auto-repeat rate of the keys and the time delay
before repeating begins. You can even make the space bar, Delete kev, and arrow
keys repeat more quickly than other keys. Another nice feature is the ability to
enable kevboard buffering allowing vou to type ahead of vour program. Finally, vou
can determine, from a program, whether any key on the keyvboard is down, even
modifier keys like Shift, Control, and Caps Lock.

The s keyboard has two ADB connectors, one for attaching it to the ADB port
and one for connecting it to the next device in the ADB chain.

O Interfaces 7

Photo 1-2: The Apple llcs Kevhoard

The next device is usually the ¢s mouse. For compatibility reasons, the cs treats
the mouse as the port 4 device, even though it is really part of the ADB chain. The
standard Gs mouse contains only one button, but the system software supports two-
button mice.

REAL-TIME CLOCK/CALENDAR

The s is the only member of the Apple 11 family with a built-in real-time clock/
calendar chip. With the help of a small battery on the motherboard, this chip keeps
track of the current date and time, even after vou have turned off the cs.

The newest versions of the ProDOS® operating system automatically recognize
the Gs clock and will use it to time- and date-stamp files when they are saved to
disk. You can also read the clock from a program using two tool set functions in
ROM. To set the time, use the Control Panel,

You can add a clock to a ITe, but most of the clocks being sold use up an expansion
slot. The Gs clock, on the other hand, does not occupy a slot (or a port), so you can
save a slot for some other tvpe of peripheral.

8 Exploring the Apple 1lcs

VIDEO DISPLAY MODES

The s supports all the standard video display modes of the Ile and Ile, plus one
important new mode. The standard display modes are as follows:

80-column text mode. The dimensions of the sereen are 80 columns by 24 rows.
40-column text mode. The dimensions of the sereen are 40 columns by 24 rows.

Low-resolution graphics mode. The dimensions of the screen are 40 dots hori-
zontally by 48 dots vertically. Each dot can be one of sixteen colors.

Double-low-resolution graphics mode. The dimensions of the screen are 80 dots
horizontally by 48 dots vertically. Each dot can be one of sixteen colors.

High-resolution graphics mode. The dimensions of the screen are 280 dots
horizontally by 192 dots vertically. Each dot can be one of six colors; color
choices depend on the column in which the dot is found.

Double-high-resolution graphics mode. The dimensions of the sereen are 560
dots horizontally by 192 dots vertically. This mode supports sixteen different
colors.

The Gs adds two minor embellishments to the text modes: the color of text characters
and the background color are user-selectable. Use the Control Panel to set them to
any of sixteen colors. You can also use the Control Panel to set a screen border
color.

The new G5 video display mode is the super high-resolution graphics mode. It
is the mode used to display the outstanding color graphics images for which the cs
has become famous. The super high-resolution screen is 200 dots in height. The
horizontal dot resolution is separately controllable for each of the 200 lines, and can
be 320 dots or 640 dots. Most programs keep all the lines at the same resolution to
simplify graphies operations.

The colors available in super high-resolution graphics mode depend on the hor-
izontal resolution. In the 640-by-200 mode, each dot can be one of four colors
selected from a group of sixteen assigned to the line. The foursome available depends
on the column position; without using tricky programming techniques, only 256
colors may appear on the screen at once. In the 320-by-200 mode, each dot ean be
one of sixteen colors; 256 colors may appear on the screen at once.

The colors used in super high-resolution graphics mode are completely pro-
grammable and are formed by mixing one shade of red with one shade of green and
one shade of blue. Because 16 shades are available for each of these primary colors,
a total of 4,096 colors can be generated.

Video Display Modes 9

SOUND

The s has the most advanced sound capability of any microcomputer. Tucked away
in a corner of the motherboard is a powerful device, called an Ensoniq™ Digital
Oscillator Chip (DOC), which is a professional-quality synthesizer for music, speech,
and sound. This same chip controls the popular Mirage Music Synthesizer used by
musicians around the world.

By feeding the Ensoniq chip the right software, yvou ean create amazing audio
effects, from symphonic sound to vour own voice. The chip contains 32 oscillators
for stepping through audio waveform tables, so theoretically you can play back 32
notes simultaneously. In the Gs implementation, oscillators are paired off to create
15 generators or voices (the 16th generator is reserved for internal use); this is still
enough to create superb sound quality.

You can play back monophonic sound on the Gs through a two-inch on-bhoard
speaker or through the RCA mini headphone jack on the back panel. If vou plug in
headphones, the speaker is automatically disabled. To get stereo sound, you can
add an inexpensive hardware demultiplexer, such as the SuperSonic card from
MDIldeas. Such a device samples the audio waveform output and the channel
number (from 1 to 8). Stereo sound is then created by diverting the odd-numbered
channels to one speaker and the other channels to the other speaker. Of course, it
is up to the sound-generation software to direct the outgoing signal to different
channels.

The cs has a 64K RAM area that is used for storage of waveforms. This RAM is
not part of the 65816 address space, but can be read from or written to through a
hardware interface called the Sound General Logic Unit (GLU).

The Ensoniq is also able to sample incoming analog waveforms and store them,
in digital form, in its 64K RAM area. This is done by attaching the incoming sound
source, such as a microphone, to an analog input connector and then triggering
analog-to-digital conversions by sending commands to the Ensoniq chip.

OPERATING SYSTEM SOFTWARE

Over the past ten years or so, Apple has developed and released four major disk
operating systems for the Apple II family, all of which work on the Gs:

* DOS (1978)
*« UCSD Pascal (1979)
* ProDOS § (1983)

= ProDOS 16 (19586)

10 Exploring the Apple llGs

Other operating systems are available from third-party developers, but only CP/M
seems to generate much interest. CP/M does not work with a plain Gs; you will
need to install a Z-80 coprocessor card first.

DOS 3.3, the latest (and final) version of Apple’s first operating system, is no
longer actively promoted by Apple. Nevertheless, it continues to be popular because
there is a large body of software which works with it. DOS 3.3 does not take
advantage of anv special features of the s, and it does not work (without modifi-
cation) with 3%-inch disk drives or hard drives; it was designed to work only with
5¥i-inch drives and their associated 140K Hoppy disks.

The UCSD Pascal operating system is primarily for those who wish to program
in Pascal. At one time, Pascal seemed to be the language of choice for educators
because students are able to learn the fundamentals of a structured programming
language quickly by writing a few programs in Pascal. Unfortunately, UCSD Pascal
has never received the widespread support which DOS 3.3 or ProDOS has. It is
certainly rare to find a professionally published program for the Apple 11 written in
Pascal.

Apple released ProDOS 8 (it was originally called just “ProDOS”) to solve the
problem of using high-capacity disks with the Apple 1I family. Originally, this meant
hard disks like the Apple ProFile™, but the category now includes the 800K 3V%-
inch disks used by the Apple 3.5 Drive and the UniDisk 3.5. ProDOS 8 works
nicely with disk volumes up to 32 megabytes and with files up to 16 megabytes. In
addition, it uses a hierarchical directory structure to make it easier to manage the
hundreds of files which can be stored on high-capacity disks.

ProDOS 16 is the only Apple 11 operating system that works only on the cs.
Although it uses the same disk file storage format as ProDOS 8, you must use
different programming techniques to control it. This means ProDOS 8 applications
will not work under ProDOS 16, and vice-versa; however, vou can store files created
by either operating svstem on the same disk,

Apple developed ProDOS 16 for the ¢s because ProDOS 8 works only with
programs that run in the first 64K of memory. This is an unreasonable restriction
in a system, like the s, that has a 16-megabyte address space. With ProDOS 16,
vou can issue disk commands from anywhere in memory.

ProDOS 16 is described in greater detail in chapter 10. For an in-depth analysis
of ProDOS §, refer to the book Apple ProDOS: Advanced Features for Programmers
(Little, 1985). Other useful books are listed in appendix 8.

DEVELOPMENT SOFTWARE

The official development software for the cs is the Apple Programmer’s Workshop
(APW). It runs under ProDOS 16 and is distributed on 800K disks, so you will need
at least one 3%-inch disk drive to use it.

APW is made up of several integrated modules accessed through a common
command shell:

Development Software 11

« A text editor for creating program source code

e A linker for combining object code modules created by APW-compatible
assemblers and compilers

« A 65816 assembler for compiling assembly language programs

= A 65516 debugger for tracking down errors in programs

An APW-compatible C compiler is also available from Apple. Similar compilers for
Pascal and BASIC are available from third parties or are in development. (See
appendix §.)

The APW shell supports many commands that will help you perform common
software development tasks, such as moving files from disk to disk, renaming files,
deleting files, and displaying the names of on-line volumes.

CREDITS

So who was responsible for designing the Gs, anyway? The answer is as close as
vour keyboard, Remove the disk from your start-up drive and turn on (or reboot)
the Gs. A “Check startup device!” error message will appear on the screen along
with an apple icon that slides back and forth. Now for the secret command: while
holding down the Open-Apple and Option keys, type Control-N. This tells the cs
to reveal the names of all the key people who worked on the s project. You read
it here first.

12 Exploring the Apple 1lGs

CHAPTER 2

Programming
the 65816

Microprocessor

The 65816 microprocessor that controls the Gs can operate in either emulation mode
or native mode. In emulation mode, the 65816 understands the same instructions
(and some new ones, too) as the 65C02 microprocessor in the Apple Ilc and the
enhanced Apple Ile. Because the s hardware can emulate the characteristics of
the Ile and Ilc almost exactly, this means most Ile and Ilc software will work on
the cs without modification.

Note: For convenience, consider future references to the lle as references to the
IIc as well.

In native mode, the 65816 supports many new and important features that make
it substantially more powerful than a 65C02:

* A directly addressable 16-megabyte address space
* 16-bit accumulator and index registers

* 16-bit memory operations

A relocatable stack and direct page

« Many extra instructions and addressing modes

By exploiting these features, developers can create powerful programs much more
easily than theyv could on a Ile with a 65C02. Refer to the manufacturer’'s 65816
data sheet in appendix 2 {or a detailed description of the microprocessor.

The 65816 in the Gs is able to operate at either of two speeds: the normal 1.0
MHz rate of the Ile or the faster rate of 2.8 MHz. (Overhead for RAM refreshing
actually reduces the average fast rate from 2.8 MHz to 2.5 MHz for RAM operations;
ROM operations take place at full speed.) The faster speed is the default, and most

13

programs will run properly at that speed. Some Ile applications, however, notably
those that rely on precise timing loops (games and simulators, for example), may
work only at normal speed. You can change the current operating speed with the
Control Panel System Speed command.

This chapter investigates how the 65816 operates. This includes an examination
of its internal registers, its instruction set and addressing modes, and two important
data areas called the stack and direct page. Methods of creating 65816 programs
using the APW assembler are also covered. Throughout the chapter, the emphasis
is on features unique to the 65816 running in native mode, but references to 65C02
emulation mode features are made where necessary.

THE 655816 MEMORY SPACE

The 65816 has a 24-bit address bus, meaning it can access an enormous 16-megabyte
(2™ bytes) memory space. Internally, it deals with this memory as a series of 64K
banks. numbered from $00 to SFF. A standard s has RAM in banks $00, $01, SEO,
and $E1 and ROM in banks SFE and $FF. Chapter 4 discusses exactly how the Gs
makes use of its memory space.

The first bank, bank $00, has special qualities. It contains two interesting data
areas called the direct page and the stack. In native mode, you can place these
areas anywhere in bank $00. In emulation mode, the stack must be in page $01;
the direct page can be any page in bank $00, but is invariably page $00 (zero page).
(A page is a group of 256 consecutive bytes beginning at an address whose last two
digits are $00.]

Direct Page

The 256-byte direct page is important because those 65816 instructions that make
use of it are shorter and faster than similar instructions using other parts of memory.
That is because the program needs to provide only one byte of address information
to the 65816 (the offset into the direct page): the other two bytes needed to form a
complete 24-bit address are taken from an internal register.

More importantly, the 65516 has powerful indirect indexed addressing modes
that require you to place a pointer to a data structure in direct page. To access a
field in the data structure, all you have to do is specify the direct page location and
the offset to the field. Unlike some microprocessors (notably the 68000), the 65516
does not allow vou to access a data structure indirectly by putting its address in a
microprocessor register; this makes it necessary to have a data area such as a direct
page.

When you are developing programs in emulation mode, it is common to refer to
direct page as zero page, because it should be located at page 300 in bank $00, as
it is when using the 65C02.

14 Programming the 653516 Microprocessor

Stack

The stack is an area of memory that is implicitly used by certain 65816 instructions
to store data. This area is “inverted” in the sense that it grows down in memory as
you add data to it (a “push” operation) and shrinks up in memory as you remove
data from it (a “pull” operation).

The active position in the stack is given by the value in a 16-bit stack pointer
(SP) register, described below. It is initially set to the last byvte (highest-addressed
byvte) in the stack area.

It is important to understand the mechanics of push and pull operations, because
they are used quite often. When you push a byte value on the stack, the byte is
placed at the address that is in the stack pointer and the stack pointer is decremented
by one. When a byte is pulled from the stack, the stack pointer is incremented and
the value is loaded from the new address it contains. The important point to realize
is that the stack pointer always points to the byte just below the last item pushed
on the stack.

In native mode, the stack could occupy the whole of bank $00, although most
programs never need more than a page or two. In emulation mode, the stack is
alwavs 256 bytes long and occupies page $01 of bank $00.

THE 65516 REGISTERS
Registers are areas inside a microprocessor that the microprocessor uses to store
values and manipulate data. They are not memory locations in the microprocessor’s
address space. In general, the more registers a microprocessor has, the more
powerful the MICTOPTOCEssor is; that is because operations involving registers are
much faster than similar operations involving memory locations.
The registers used by the 63816 are shown in figpure 2-1. There are nine of them:

* Accumulator

* X index register

* Y index register

* Data bank register

* Program bank register

* Direct page register

* Processor stalus register

« Stack pointer

» Prnj.{ram counter

The 63516 Registers 15

Figure 2-1. The 65816 Register Sets in Emulation Mode and Native Mode

65C02 65816
emulation mode native mode
7 0 15 7 0
Accumulator A AorC
B | A
1 15 7 4]
X Index Register b 4 X \
|
7 15 7 o
Y Index Regisier ¥ Y J
I I
23 16
Data Bank Register B
7 o 15 o]
S
Stack Pointer 01 S 00 I J
13 4]
; . D
Direct Page Register 00 I
15 0 15 4]
Program Counter PIE PIC
23 16
Program Bank Register K
7 o 7 0
Status Register P P !

Processor Status Register

The processor status register (P) contains a group of status flags and mode select
bits that reflect the operational state of the 65816 (see figure 2-2). Most instructions
cause one or more status flags to change according to the operations they perform;

16 Programming the 63816 Microprocessor

Figure 2-2. The Status Flags in the 63816 Processor Status Register

65C02 emulation mode)
1 = emulation mode

e — Emuletion 0 = native mode
(n[v] [efofi]z]c
I_ Eﬂrr—g = carry set
i = zero result

Decimal Mode decimal math

1
1
IRQ Disable 1 = no interrupts
1
1

Break = BRK causedinterrupt
[Unused]

Overflow 1 = overflow

MNegative 1 = negative result

65816 native mode

] - Emulation | = emulation mode
= nalive mode
INlvim|x[p|1]Z]c
Carry = carry set
Zero = zero result
IRQ Disable = no interrupts

Decimal Mode

Index Register Select
Memory/Accumulator Select
Overflow

Megative

decimal math

= B-bit/ 0 = 16-bit
= B-bit/ 0 = 16-bit
averflow
negutiue result

s e s e o o =

status-checking instructions can then be used to change the How of a program based
on the result.

The structure of the status register depends on whether the processor is in
emulation mode or native mode, as figure 2-2 indicates. The Hags in the emulation
mode status register are the carry Hag, the zero Hag, the IRQ disable flag, the
decimal mode flag. the break flag. the overflow flag, the negative flag, and the
emulation flag. In the native mode status register, the break Hag is not present, the
spare status bit is used, and two register-select flags are available: the memory/
accumulator select lag and the index register select flag. The flags in the emulation
mode status register and the native mode status register are discussed below.

Carry Flag. The carry flag is most often used when performing addition (ADC)
or subtraction (SBC) operations. As is shown later in this chapter, this flag must be

The 65816 Registers 17

cleared (with CLC) before adding two numbers and must be set (with SEC) before
subtracting two numbers.

The carry flag is also used to check the result of a comparison operation (CMP,
CPX, CPY). If the number in the specified register is less than the number it is
being compared to, the carry flag is cleared; otherwise it is set. The BCC and BCS
branch-on-condition instructions can then be used to switch control to another part
of the program depending on the result.

The carry flag also participates in the shift and rotate instructions: ASL, LSR,
ROL., and ROR. These instructions are deseribed later in this chapter.

Zero Flag. The zero Hag indicates whether the result of the last arithmetic oper-
ation or register loading operation was zero. If it was, the zero Hlag is set to 1;
otherwise, it is cleared to 0.

IRQ Disable Flag. The IRQ disable flag controls how the 65816 reacts to hardware
interrupt request (IRQ) signals. (Interrupts are discussed later in this chapter.) If
the flag is set to 1, IRQ interrupts are ignored; otherwise the 65816 processes them,

Decimal Mode Flag. This flag controls the types of numbers the 65816 uses to
perform addition (ADC) and subtraction (SBC) operations. When the decimal mode
flag is off, standard binary arithmetic rules are used. This is the mode in which most
programs operate and it is the default mode when the s is turned on.

When decimal mode is on, the 65516 assumes all numbers are stored in binary-
coded decimal format and generates arithmetic results that are in this format as
well. In this format, each byte contains exactly two digits from 0 to 9; the most-
significant digit occupies the high-order four bits of the byte.

Break Flag. The break flag indicates whether the source of a 63516 interrupt in
emulation mode is a BRK instruction (the flag is set) or a hardware interrupt request
(the flag is clear). Unlike native mode, BRK and interrupt requests vector to the
same subroutine; the subroutine can inspect the break flag to determine the cause
of the interrupt.

Overflow Flag. The overflow flag usually indicates whether the result of an arith-
metic operation involving two's-complement (signed) numbers is within prescribed
limits. The 655816 uses the two's-complement form for signed arithmetic operations
to simplify internal calculations. The limits are -128 to +127 for 8-bit numbers and
-32768 to +32767 for 16-bit numbers.

The most-significant bit of a two’s-complement number is the sign bit: it is 0 for
positive numbers and 1 for negative numbers. For positive numbers, the remaining
bits represent the magnitude of the number in standard binary form.

18 Programming the 65816 Microprocessor

Things are not quite so simple for negative numbers. To determine the two's-
complemsent form, take the absolute value of the number, complement it, then add
1 to the result. Here is how to form -22, for example:

§ﬂ0101 10 (+22 in binary)
11101001 (+22 complemented)
* 1 (add 1)

11101010 (-22 in two's-complement form)
Notice that the high-order bit is set, identifying this as a negative number.

Negative Flag. This flag reflects the value of the high-order bit of the last value
transferred directly to the A, X, or Y register or put there as a result of a calculation.
The high-order bit is bit 7 for an 8-bit register or bit 15 for a 16-bit register.

The negative flag derives its name from the fact that the high-order bit of a two’s-
complement number reflects its sign: if the bit is 1, the number is negative.

Emulation Flag. The emulation flag hides behind the carry flag in the status
register. You will use it to set the operating mode of the 65816. When it is set to
1, the 65816 operates in 65C02 emulation mode; when it is 0, the 65816 operates
in native mode.

Entering native mode paves the way to powerful 16-bit register and memory
operations, as is discussed below.

The only way to affect the emulation bit is to set or clear the carry flag (with
SEC or CLC) and then execute the XCE (exchange carry with emulation) instruction.

Register Select Flags. There are two register select flags in the native mode status
register: the memory/accumulator select flag and the index register select flag.

The index register select bit is called x and the memory/accumulator select bit is
called m. When x=1 the 65816's X and Y registers are both 8 bits in size: when
x=0, these index registers are 16 bits. Similarly, when m=1 the A register is 8 bits
in size and all memory operations (such as DEC, INC, ASL, and others) involve
one byte only. When m=0, the A register is 16 bits in size and memory operations
aet on two consecutive bytes (a word).

When the m and x bits are both 0, the 65816 is said to be in full native mode.
This is' the mode you will usually want to use when you develop a GS-specific
application.

The 65816 has two special instructions you can use to set or clear the m and x
bits: REP and SEP. To elear bits, use the REP instruction:

REP #%100110000 sclear m and x bits

The 65516 Registers 19

Note: As is discussed later in this chapter, the # symbol means the number is a
constant, not an address; % identifies the number as a binary number. =

REP clears to 0 those bits in the status register that correspond to 1 bits in the
operand. (The operand is the number following REP.) Thus, you would use REP to
activate 16-bit register/memory and indexing operations. .

Conversely, SEP sets to 1 those bits in the status register that correspond to 1
bits in its operand. Use SEP to revert to 8-bit register/memory and indexing
operations.

Accumulator

The accumulator (A) is an 8-bit or a 16-bit register, depending on the state of the
m flag in the native mode status register. (Actually, even in 8-bit mode you. ean
access the “other” 8 bits of the accumulator with the XBA exchange instruetion,) In
emulation mode, the accumulator is always 8 bits in size.

The accumulator is the only register that works with the 65816's addition (ADC)
and subtraction (SBC) instructions. In fact, that is how it gets its name: it accumulates
the results of arithmetic operations. It is also the only register which participates in
logical operations (ORA, AND, XOR).

Most instructions refer to the accumulator by the symbol A, no matter what its
size. Some call it C to emphasize that they act on the entire 16 bits even if the m
flag is 1. The two halves of the 16-bit registers are also referred to as A (low 8 bits)
and B (high 8 bits). This is for the benefit of the XBA instruction, which swaps the
two halves of the 16-bit accumulator.

Using a 16-bit accumulator is convenient because it can handle numbers up to
65,535 (instead of just 255), thus simplifying many types of arithmetic instructions.

A 16-bit accumulator is somewhat less convenient for dealing with character
strings, however, because you usually want to load only one character into the
accumulator at once. In these situations, you may want to temporarily revert to an
8-bit register using the SEP #%00100000 instruction.

Index Registers

The index registers are called X and Y. They are commonly used to hold offsets into
a data structure from a fixed reference location; hence the name index.

Like the accumulator, the index registers are 8 bits in size in emulation mede.
In native mode, they can be either 8 bits or 16 bits in size: if the x flag is 0, they
are 16-bit registers; if it is 1, they are 8-bit registers.

Note that the x flag always affects both index registers: it is not possible to have
X and Y registers that are different sizes.

20 Programming the 65816 Microprocessor

Stack Pointer

The 16-bit stack pointer register (SP) points to an address in bank $00 that is one
byte below the address of the last value pushed on the stack. It automatically
decreases after push instructions, such as PHA and PHX, and increases after pop
instructions, such as PLA and PLX,

In emulation mode, the high-order byte of the stack pointer is always 301, so the
stack is confined to 256 bytes. =

Direct Page Register

The 16-bit direct page register (D) contains the address of the start of the direct
page in bank $00. It can contain any value, but direct page operations are faster if
direct page begins on a page houndary. In emulation mode, the direct page register
should be set to $00,

Data Bank Register

The 8-bit data bank register (B) indicates the default memory bank for memory
access operations. When you specify a 16-bit address in an instruction, the 65816
calculates the full 24-bit address by concatenating the data bank register. In emu-
lation mode, the data bank register should be set to $00.

Program Bank Register

The program bank register (K) is an 8-bit register that indicates in which memory
bank the current program is operating. It combines with the 16-bit program counter
register to mark the exact position in memory of the instruction currently being
executed.

There is no explicit instruction for changing the program bank register. It im-
plicitly changes when the program transfers control to another bank with a JSL or
JMP instruction.

In emulation mode, the program bank register should be set to 300,

Program Counter

The 16-bit program counter (PC) holds the offset from the start of the current
program bank of the instruction currently being executed. The 65816 automatically
increments the PC as it processes instructions, usually by adding the size of the
instruction just executed. When a flow of control instruction such as JMP or BRA
is encountered (see below), however, the operand address is put into the PC, causing
execution to continue at the target address.

The 65816 Registers 21

Note that when the PC changes from $FFFF to $0000 at a memory bank bound-
ary, the program bank register is not incremented. This means that control passes
to the beginning of the current bank, not to the beginning of the next bank. As a
result, a 65816 program is not permitted to cross a bank boundary, although it can
call a program or subroutine in another bank. On the cs. the ProDOS 16 program
loader always loads a program into a single bank.

THE 65816 INSTRUCTIONS

The 65816 supports 91 different instructions. (See appendix 2 for detailed descrip-
tions of each.) This includes every 65C02 instruction as well as 27 instructions
unique to the 65816. Each instruction may use one or more addressing modes to
locate data it uses: the number of instruction/addressing mode combinations is 256.
You will find a deseription of addressing modes in the next section.

A one-byte binary opcode tells the 65816 what the instruction is and what
addressing mode it is using. You do not have to memorize these opcodes. because
vou will use an assembler to convert mnemonic instructions and addressing modes
in a source code file to binary object-code form.

Following the opcode there may be up to three operand bytes describing a
number or an address to be used by the instruction. Multibyte operands are always
stored with the low-order byte first. Again, the assembler takes care of arranging
these bytes properly for you.

The next section of this chapter examines the 65816 instructions, discussing what
they do, and how they should be used. Refer to table R2-1 (in the reference section
at the end of the chapter) for an alphabetical list of instructions. This table also
contains the permitted addressing modes and opcodes for each instruction type as
well as the number of cyvcles the 65816 uses to complete each instruction.

(The time for one eycle is the reciprocal of the clock speed. The clock speed is
either 2.8 MHz or 1.0 MHz, depending on the setting of the Control Panel System
Speed option. For programs operating in RAM in fast mode, the average clock
speed is actually about 2.5 MHz because of overhead introduced by RAM refreshing
requirements.)

Note: Instructions marked with an asterisk in the following sections are not
supported by the 65C02 microprocessor.

Load/Store Instructions

LDA Load the accumulator (bvte or word)
LDX Load the X register (byte or word)
LDY Load the Y register (byte or word)
STA Store the accumulator (byte or word)
STX Store the X register (bvte or word)
STY Store the Y register (byte or word)
5TZ2 Store zero to memory (byte or word)

22 Programming the 65816 Microprocessor

The first three instructions, LDA, LDX, and LDY, let you load 8- or 16-bit values
into the accumulator and index registers. The data size depends on the settings of
the m and x bits in the 65816 status register. The value can be a specific number
or a number stored at a given memory location.

The STA, STX, and STY instructions let you transfer the contents of a register
to a particular memory location. STZ stores a zero at a memory location.

When loading word-sized values from a given address, keep in mind that the
low-order 8 bits of the register are filled with the number stored at Address and
the high-order 8 bits are filled with the number stored at Address+1 (the next
higher address). Similarly, when storing words, the low-order 8 bits of the register
are stored first.

Push Instructions

*PEA Push effective absolute address (word)
*PE] Push effective indirect address (word)
*PER Push effective relative address (word)
PHA Push the accumulator (byte or word)
*PHB Push the data bank register (byte)
*PHD Push the direct page register (word)
*PHK Push the program bank register (byte)
PHP Push the status register (byte)
PHX Fush the X register (byte or word)
FHY Push the Y register (byvte or word)

Use the push instructions to transfer data to the top of the stack and decrement the
stack pointer by the data size. The data size is either byte or word, depending on
the instruction and the settings of the m and x status bits. Word operands are pushed
high-order byte first.

PHA, PHB, PHD, PHK, PHP, PHX, and PHY all push the contents of a register
on the stack. PEA, PEI, and PER push two-byte addresses, as follows:

PEA pushes an absolute 16-bit address; most programmers really use it to push
numeric constants, however, because it does not involve loading the constant
into a register first.

PEI pushes the address stored in two consecutive direct page locations.

PER pushes the address, which is a specified number of bytes from the position
of the instruction. This instruction is useful if you are developing relocatable
code (code that runs at any load address).

The operand for a PEA, PEI, or PER instruction gives the 65816 the address it
needs to work with,

The 65816 Instructions 23

Pull Instructions

PLA Pull the accumulator (byte or word)
#«PLB Pull data bank register (byte)
+PLD Pull direct page register (word)

PLP Pull status register (byte)

PLX Pull X register (byte or word)

PLY Pull Y register (byte or word)

These instructions transfer data from the top of the stack to a register, then increment
the stack pointer by one (byte operation) or two (word operation). Word operands
are popped low-order byte first.

Inter-register Transfer Instructions

TAX Transfer A to X
TAY Transfer A to Y
TSX Transfer S to X
TXS Transfer X to 5
TXA Transfer X to A
TYA Transfer Y to A
«TCD Transfer Cto D
*TDC Transfer D to C
*«TCS Transfer C to S
*TSC Transfer S to C
+TXY Transfer X to Y
*TYX Transfer Y to X
Note: D = data bank register; C = 16-bit accumulator

The inter-register transfer instructions let you move data from register to register.
Special reasons for wanting to do this are to initialize the stack pointer (TXS, TCS)
and the direct page register (TCD).

Be careful when using the first six instructions in the list if you are transferring
between registers of different sizes. For TXA and TYA, if x=1 and m=0, the high-
order 8 bits of the accumulator (B) is zeroed; if x=0 and m=1, B is not affected.
For TAX and TAY, if m=1 and x=0, the B register is transferred to the upper 8 bits
of the index register; if m=0and x=1, the upper 8-bits of the index register are not
affected. For TXS, the high-order stack register byte is zeroed if x=1.

24 Programming the 65816 Microprocessor

Exchange Instructions

= XBA Exchange B and A
#XCE Exchange carry and emulation bits

The two exchange instructions involve manipulating bits inside registers. XBA swaps
the upper half of the 16-bit accumulator (B) with the lower hall. XCE swaps the
carry bit of the status register with the emulation bit so that you can switch between
native and emulation mode, as explained earlier in this chapter.

Block Move Instructions

*MVN Move block in negative direction
*MVP Move block in positive direction

The block move instructions are powerful instructions that let vou transfer a block
of data from any part of memory to any other (at least if you are in full native mode).
For MVN, X and Y must contain the starting addresses of the source and destination
blocks; the length of the block, minus one, must be in the 16-bit C register (even
if the m Hlag is not 0). The source and destination banks are specified in the operand
for the instruction. MVN moves data from the source block to the destination block
in increasing address order.

If the source and destination blocks overlap and the destination block begins at
a higher address, do not use MVN, because the end of the source block will be
overwritten before its data is moved. In this situation, use the MVP instruction
instead. It moves data from the end of the block to the beginning. (Of course, vou
would not use MVP if the blocks overlap and the destination block begins at a lower
address.)

To use MVN, place the ending address of the source and destination blocks in X
and Y; as with MVP, the count minus one goes in C.

Flow-of-control Instructions

BCC Branch if carry flag is clear
BCS Branch if carry flag is set
BEQ Branch if zero flag is set (equal)
BMI Branch if negative flag is set (minus)
BNE Branch if zero flag is clear (not equal)
BPL Branch il negative flag is clear (plus)
BRA Branch always

*BRL Branch always (long form)

The 65816 Instructions 25

BvVC Branch if overflow flag is clear
BVS Branch if overflow flag is set
*JML Jump to long address
JMP Jump to absolute address
#»JSL Jump to subroutine long, saving return address
JSR Jump to subroutine, saving return address
*RTL Return from subroutine long
RTS Return from subroutine

When the 65816 executes a program, it usually processes instructions in the order
in which they appear in the program. You can use the flow of control instructions
to tell the 65816 to jump or branch to any position in a program, either uncondi-
tionally or only if a certain condition is true.

JML, JMP, BRA, and BRL are unconditional instructions; they always direct the
65816 to another portion of the program. JMP transfers control to a specific memory
address. BRA and BRL perform branching relative to the current address in the
program counter. The range of a BRA branch is -128 to +127 bytes from the start
of the next instruction in the program. BRL branches are from -32768 to +32767,
s0 you can use BRL to move to any part of the current program bank.

The 65816 also supports conditional branching, in which the decision on whether
to change the flow of control depends on the setting of flags in the status register.
These are the BCC. BCS, BEQ, BMI, BNE, BPL, BVC, and BVS instructions.
Use them after any operation that affects the flags so that you can take different
actions depending on the result. Refer to table R2-1 to determine how each instruc-
tion affects the processor status fags.

For example, after a CMP (compare) command, the carry flag is set if the number
in the accumulator is greater than or equal to the number in the operand. Thus,
you could use a BCS instruction to transfer control to the portion of the program
that deals with this situation.

If a program needs to perform the same task again and again, it is best to convert
the task to a callable subroutine so that its code does not have to be repeated. To
call a subroutine you can use the JSR or JSL instructions, depending on whether
the subroutine ends with RTS or RTL. If the subroutine is in another code bank,
you must use JSL.

Both JSR and JSL push on the stack the address, minus one, of the next instruc-
tion in the program. For JSR this is an offset from the start of the current program
bank (two bytes); for JSL it is a long absolute address (three bytes). The subroutine
must end with either an RTS instruction (if called with JSR) or an RTL instruction
(if called with JSL). RTS and RTL pop the return address put on the stack by JSR
and JSL, put it in the program counter (JSL also updates the program bank register),
and increment the program counter. This causes execution to resume at the instruc-
tion following the SR or JSL.

26 Programming the 65816 Microprocessor

Arithmetic Instructions

ADC Add memory to accumulator with carry
CMP Computer accumulator with memory
CPX Compare X register with memory

CPY Compare Y register with memory

DEC Decrement the accumulator or memory

DEX Decrement the X register
DEY Decrement the Y register

INC Increment the accumulator or memory

INX Increment the X register

INY Increment the Y register

SBC Subtract memory from accumulator with carry

You can use INC. INX, and INY to add one to the value in the accumulator or an
index register. (INC also works with memory locations.) The largest number a
register can hold is $FF (8 bit) or SFFFF (16 bit): the register rolls to $00 if you
increment it in these situations.

The corresponding decrement instructions are DEC, DEX, and DEY. They roll
the contents of the registers backwards through 0 to $FF (8 bit) or $SFFFF (16 bit),

You can add or subtract numbers other than one from the accumulator with the
ADC and SBC instructions. To add with CLC, you must remember to clear the
carry flag first and to add multiword (or multibyte) numbers starting with the low-
order word. For example, to add $1ADSS to the long word stored from Address to
Address+3, use code like this:

CLC

LDA Address : (assume 16-bit A)
ADC #%$1ADB8 :low word

STA Address

LDA Address+2

ADC #*31ADBE :* = high word
STA Address+2

Subtraction is similar to addition except that vou must start with a SEC instruction
hefore performing a series of SBC operations.

The compare instructions, CMP, CPX, and CPY, are really subtraction instruc-
tions in disguise. The difference is that the result of the subtraction is not stored
anywhere; they simply cause flags in the status register to change depending on the
result. The flag settings are as follows:

The zero fag is set if the two numbers are the same.

The carry flag is set if the (unsigned) number in the register is greater than or
the same as the number being compared.

The 65816 Instructions 27

The carry flag is clear if the (unsigned) number in the register is less than the
number being compared.

You can use the branch-on-condition instructions to change the flow of control after
4 comparison operation.

Logical Instructions

AND Logical AND
EOR Logical exclusive-OR
ORA Logical OR

Logical instructions combine the value in the accumulator with the value in the
operand in accordance with the rules of Boolean algebra. The result is stored in the
accumulator.

For AND operations, all bits in the accumulator that correspond to 0 bits in the
operand are cleared to 0; other bits are unaffected. With ORA, all bits in the
operand that correspond to 1 bits in the operand are set to 1; other bits are
unaffected. The EOR operation is more complicated than either AND or ORA. It
sets to 1 all bits that are 1 in the accumulator and 0 in the operand or vice-versa.
Bits that are the same in value are cleared to 0,

Bit-manipulation Instructions

BIT Test bits
TRB Test and reset bits
TSB Test and set hits

The BIT instruction performs two functions at once. First, it transfers the high-
order two bits of the operand to the negative and overflow flags in the status register
(but only if the operand is not an immediate number). If these two bits store program
flags, vou can follow the BIT with BMI to branch if the high-order bit is set, or
with BVS if the next-to-high-order bit is set.

The second function of BIT is to logically AND the contents of the accumulator
with the value of the operand. The result is not stored, but the zero flag is condi-
tioned by the operation. This is a handy way of determining if certain bits are clear
or set without destroying the contents of the accumulator. For example, to test bits
0 and 1, use the instruction:

BIT #%00000011

If either of the last two bits in the accumulator are 1, the zero flag is not set and a
subsequent BNE branch will succeed.

You can set or clear any group of bits in an operand with the TRB and TSB
instructions. TRB clears to 0 those bits in the operand that correspond to 1 bits in

28 Programming the 65816 Microprocessor

the accumulator. Conversely, TSB sets these bits to 1. TRB and TSB also logically
AND the accumulator with the operand and set the zero flag according to the result.
The result itself is not stored.

Shift-and-rotate Instructions

ASL Arithmetic shift left
LSR Logical shift right
ROL Rotate left

ROR Rotate right

The shift and rotate instructions let you manipulate the bits in the accumulator or
in a memory location by shifting them left or right.

ASL moves the bits in the operand one position to the left. The high-order bit
moves into the carry flag of the status register and a 0 appears in bit 0 of the
operand. ROL is the same as ASL, except that it is the initial value of the carry flag
that is put in bit 0.

LSR moves bits in the operand one position to the right, with bit 0 moving into
the carry flag. A 0 appears in the high-order bit of the operand. ROR is the same,
except that the initial value of the carry flag is put in the high-order bit.

The operand size for shift and rotate instructions is either 8 bits or 16 bits,
depending on the status of the m bit in the status register.

System-control Instructions

BRK Break (software interrupt)

RT1 Return from interrupt

NOP No operation

SEC Set carry flag

CLC Clear carry flag

SED Set decimal flag

CLD Clear decimal fAag

SEI Set interrupt flag

CLI Clear interrupt flag

CLV Clear overflow flag
#SEP Set status register bits
*REP Reset status register bits
#COP Co-processor (software interrupt)
#STP Stop the clock
*WAI Wait for interrupt
#WDM [Reserved for expansion|

The system control instructions perform a variety of miscellaneous operations. One
group (SEC, CLC, SED, CLD, SEI, CLI, CLV, SEP, and REP) can be used to

The 65816 Instructions 29

explicitly set or clear bits in the status register. The main use of SEP and REP is
to set and clear the m and x bits in the status register, as explained above.

NOP is a “do-nothing” instruction that simply acts as a place-holder in a debugging
operation or a time-waster in a timing loop.

STP, WAI, and WDM are instructions you will probably never need to use. STP
essentially shuts down the 65816 until a system reset occurs. WAI puts the 65816
into a low-power mode and then waits until a 65516 interrupt occurs before passing
control to the next instruction in the program. The WDM instruction is reserved
for future expansion of the 65816 instruction set.

The BRK, COP, and RTI instructions are related to 655816 interrupts and will be
discussed later in this chapter.

THE 65816 ADDRESSING MODES

An addressing mode describes the technique the 65816 uses to locate the data with
which an instruction needs to work. In a 65816 program source file, the addressing
mode information appears in the operand field, just after the instruction mnemonic.
The assembler format for each addressing mode is shown in table 2-1.

Knowing the addressing mode, the 65816 can use the operand to calculate an
effective address (EA) for the instruction. For read operations, the EA is the address
from which data is read; for write operations, it is where data is stored. The effective
address calculation varies with the addressing mode, of course: it may be a simple
absolute address, an address calculated by adding the contents of the X register to
a base address, an address pointed to by two locations in direct page, and so on.
The availability of so many different addressing modes makes it easier to develop
efficient programs.

This section investigates the various addressing modes you can use with the
65816. Keep in mind, however, that not all addressing modes can be used with
every instruction. To see if a particular combination is permitted, refer to table
R2-1.

Implied

Many instructions do not require an explicit indication of addressing mode because
the instruction mnemonic completely describes what needs to be done. These
instructions use the implied addressing mode.

Examples of such instructions are as follows:

SED NOP TAX TS5X Wal
cLv CLD TAY TXA WDM
SEI CLI TCD TXS XBA
CLC SEC TCS TRY XCE
INX INY TDC TXA
DEX DEY TsC TYA

This list includes every instruction that explicitly sets or clears specific status Hags.

30 Programming the 65816 Microprocessor

Table 2-1: The Assembler Formats of the 65816 Addressing Modes

Name of Addressing Mode

Implied
Accumulator
Immediate
Program Counter Relative
*Program Counter Relative Long
Stack
*Stack Relative
*Stack Relative Indirect Indexed with Y
*Block Move
Absolute
Absolute Indirect
Absolute Indexed with X
Absolute Indexed with Y
Absolute Indexed Indirect
*Absolute Long
*Absolute Long Indexed with X
*Absolute Indirect Long
Direct Page
Direct Page Indirect
Direct Page Indexed with X
Direct Page Indexed with Y
Direct Page Indirect Indexed with Y

Assembler

__I_fnmmt

A
#immediate
rel

longrel

51,5

(sr,5),¥
srchnk, destbnk
addr

(addr)

addr, X

addr, Y
{addr,X)
long

long, X
[addr]

dp

(dp)

dp,X

dp,Y

(dp),Y

The 65516 Addressing Modes 31

Table 2-1: Continued

Assembler

Name of Addressing Mode - Format

Direct Page Indexed Indirect with X (dp.X)
*Direct Page Indirect Long [dp]
*Direct Page Indirect Long Indexed with Y [dp],Y
A = accumulator longrel = 16-bit offset address
addr = 16-hit address number = 8- or 16-bit constant
destbnk = bank number rel = 8-hit offset address
dp = direct page address st = stack pointer offset
long = 24-bit address srchnk = bank number

~OTE: Addressing modes not supported by the 65C02 are marked with asterisks.

Accumulator A

The accumulator addressing mode is used by those instructions that manipulate the
contents of the accumulator but that do not need to be supplied with an address or
data. Here are some examples:

LSR ROL
ASL ROR
INC DEC

Ta select this addressing mode, put the letter A in the operand field.

Immediate #immediate

The immediate addressing mode is used when the operand is a numeric constant.
The assembler format for this mode is #immediate. That is, precede the number
{or a svmbol for a number) with the # symbol.

Here are some examples:

LDA #23 sDecimal number

LDX #$AEF2 ;Hex numbers begin with $
CMP #%00000110 ;Binary numbers begin with %
REF #%20

ADC #256

32 Programming the 65516 Microprocessor

Do not forget to include the # symbol when using this mode. If you do forget, the
assembler thinks you are referring to an address and will deal with the number at
that address, not the constant itself.

Program Counter Relative

This addressing mode is used by the 65516 branch-on-condition instructions: BCC,
BCS, BEQ, BMI, BNE, BPL, BRA, BVC, and BVS. For this mode, the operand
represents the offset to a target address, measured from the instruction following
the branch instruction. This offset must be a signed value from -128 to +127.
Transferring control to a target outside this range is possible only with unconditional
JMP or BRL instructions.

When using this mode, it is not necessary for you to calculate the offset. Simply
specify the address of the target location in the operand field of the instruction by
referring to its label, as follows:

BCC MyTarget ;Branch to labelled address

MyTarget MNOP
The assembler calculates the offset for you when assembling the file.

Program Counter Relative Long

This addressing mode is used by the BRL and PER instructions only. For this mode,
the operand is an offset from the start of the following instruction to a target address.
The offset range is from -32768 to +32767, so vou can access any location in the
current bank. (Wraparound within a bank occurs if the offset is past the end of a
bank.)

As with the program counter relative mode, you need only specify a target address
when writing a program; the assembler will calculate the actual offset for vou.

Stack

The stack addressing mode is really a variation of the implied mode, because the
instruction mnemonic completely describes the operation. For push instructions,
this mode causes data to be added to the top of the stack and the stack pointer to
be decremented by the size of the data. For pull instructions, data is taken from
the top of the stack and the stack pointer is incremented.

Stack Relative sr,S

A common technique for passing parameters to a subroutine is to place the param-
eters on the stack prior to executing the JSR or JSL instruction. As the next chapter
will cover, this is the technique you will use when calling s tool set functions,

The 65816 Addressing Modes 33

An easy way to retrieve parameters passed on the stack, or to return parameters
in the stack. is to use the stack relative addressing mode. With this mode, you
specify a one-byte number from $00 to $FF; the 65816 adds this number to the
contents of the stack pointer to determine the effective address.

Suppose a program calls a subroutine by pushing one word of data on the stack
before the JSR. When the subroutine gets control, the stack looks like this:

parameter SP+3

return address | SP+1

sp —>

To access the parameter, use the following instruction:

LDA $03,5

The offset from the stack pointer is $03, because SP points to the address just below
the JSR return address. and the return address is two bytes long. If the subroutine
had been called with a JSL instruction, the offset would be $04 because a long
return address is three bytes long.

Note that if the subroutine pushes any data on the stack after getting control,
the offset to the parameter must be adjusted accordingly.

Stack Relative Indirect Indexed with Y (sr,8),Y

This addressing mode is useful if the stack contains a pointer to a data structure in
the current data bank. By specifying a stack offset from $00 to SFF and loading the
Y register with an offset into the data structure, you can access any field in the data
structure.

The assembler format for this mode is (sr,S),Y. The 65816 calculates the eftective
address by first adding sr to S. It then takes the pointer stored at that address and
adds to it the value stored in the Y register.

One difficulty with this mode is that it does not work with long (24-bit) address
pointers, and these are the types of pointers passed to s tool set functions. In this
situation. it is better to use the direct page indirect long indexed with Y addressing
mode (see below). You can do this by defining a new direct page that begins at the
base of the stack.

Block Move srcbnk,desthnk

This addressing mode is used only by the MVN and MVP block move instructions.
The form of the operand is two bank numbers separated by a comma; the first bank
is the bank for the source block and the second is the bank for the destination block.

34 Programming the 65816 Microprocessor

Absolute Addressing Modes

Absolute addr
Absolute Long addr
Direct Page d 8]

The effective address for the absolute addressing mode is the 16-bit address defined
by the label in the operand field. The 65816 forms the effective 24-bit address by
combining this address with the number in the program bank register.

Here are some examples of the absolute addressing mode:

LDA MyData
STX TheResult
ROL BitFlags

In each case, the operand field contains a symbolic label for the address.

When using the absolute addressing mode, it is very important to ensure that
the data bank register is the same as the program bank register, at least if the labels
refer to offsets into the program bank (the usual case). The easiest way to do this is
to execute PHK, PLB instructions at the beginning of the program.

If the data bank register is not set up properly, you must use the absolute long
addressing mode. In this situation, the effective address is the 24-bit address spec-
ified in the operand; the data bank register is not referenced. Most assemblers,
including Apple’s APW assembler, default to absolute addressing if they cannot tell
if the address is long (24-bit) or normal (16-bit). To force absolute long addressing,
put a > symbol in front of the address.

If the operand is a location in direct page, you can use the direct page addressing
mode instead of absolute or absolute long.

Absolute Indexed Addressing Modes

Absolute indexed with X addr, X
Absolute indexed with Y addr,Y
Absolute long indexed with X absaddr, X
Direct page indexed with X dp, X

Direct page indexed with Y dp , Y

These indexed addressing modes are the same as the corresponding unindexed
addressing modes, except that the 65516 adds the contents of an index register to
the specified address to form the effective address. Here are some examples:

LDA TaskRecord, X sEA = TaskRecord+X
STA MyField,Y 3EA = MyField+Y
LDA $E10000,X sEA = SE10000+X
STA §32.,% +EA = $32+X

LDX $16,Y sEA = §$16+Y

The 65516 Addressing Modes 35

Use these modes to step into the data structure beginning at the base address. The
base address is either a 16-bit address (addr), a 24-bit address {absaddr), or a direct
page address (dp).

Indirect Addressing Modes

There are eight different indirect addressing modes you can use to access a data
structure whose address is passed to you as a parameter:

Direct page indirect (dp)
Direct page indirect long (dp]
Absolute indirect (addr)
Absolute indirect long [addr]
Absolute indexed indirect (addr, X)
Direct page indexed indirect with X (dp,X)
Direct page indirect indexed with Y (dp),Y

Direct page indirect long indexed with Y [dpl,Y

If you know the absolute position in memory of the data structure, you can use a
direct addressing mode instead of an indirect addressing mode.

The indirect addressing modes all involve address pointers that are two (normal)
or three (long) bytes in length. These pointers are stored in memory with the low-
order byte or bytes first.

The indirect modes which use nondirect page addresses for storing the pointers
work with JMP and JSR instructions only:

JMP (addr) 316-bit pointer
JMP [addr] ;long pointer

JMP {addr,X) 316-bit pointer
JSR (addr,X) ;16-bit pointer

For these modes, addr is the address at which the pointer to the data structure is
stored. For (addr) and [addr] modes, this address must be in bank $00.

The (addr,X) mode is often used to pass control to a subroutine whose address is
in a table of subroutine addresses beginning at addr. By putting the relative position
of the subroutine address in X, vou can call the subroutine with JSR (addr,X) or
JMP (addr,X). That is because the 65816 forms the effective address by adding the
value in the X register to the address specified in the operand.

For the other five indirect addressing modes, the pointer must be in a direct
page location. The effective addresses are calculated as follows:

(dp) EA = the address stored at dp/dp+1

[dpl EA = the address stored at dp/dp+ 1/dp+2
{dp)sY EA = the address stored at dp/dp+1 plus Y

36 Programming the 65516 Microprocessor

(dpl,Y EA = the address stored at dp/dp+ 1/dp+2 plus Y
(dp,X) EA = the address stored at dp+X/dp+X+1

Note: The effective addresses are addresses in the bank stored in the data bank
register.

Use the (dp) or [dp] or (dp,X) modes if vou need to access only the first byte (8-
bit register) or word (16-bit register) of the data structure. To manipulate other
portions of a data structure, vou must use (dpl,Y or [dp],Y after setting the Y register
to the appropriate value.

The [dpl.Y addressing mode is useful for accessing data structures whose long
pointers are passed on the stack to a subroutine. Here is an example of a subroutine
that stores a result in bytes $20/$21 of a data structure whose address is pushed on
the stack before the subroutine is called with JSL:

; 3 bytes at top of stack on entry (from JSL)

FHD ;Save d.p. register (adds 2 to SP)
TSC

TCD ;Make direct page = stack pointer
LDA #$8000 sThis is the value to return

LDY #20 jaccess 20th byte

STA [$0B],Y sstore the result (306 = 2+3+1)
PLD ;Restore original direct page

RTL 1+ (Sub called with JSL)

Rather than remove the pointer from the stack and put it in the current direct page,
this subroutine defines a new direct page that begins at the address stored in the
stack pointer. Because this occurs after the PHD instruction, the direct page address
of the stack parameter is $06; the long return address (pushed on the stack by JSL)
is at $03-$05, and the copy of the direct page register is at $01-502.

INTERRUPTS

An interrupt is an electronic signal that demands the immediate attention of the
microprocessor. The signal can originate from either a hardware device or a pro-
gramming instruction. The four basic types of hardware interrupts are:

* [RQ (interrupt request)

» NMI (nonmaskable interrupt)

* Reset

« Abort

Interrupts 37

The two types of software interrupts are:

* BRK (break)

* COP (co-processor)
This section takes a look at how the 65816 deals with interrupts.

The IRQ Hardware Interrupt

An IRQ hardware interrupt is an electrical signal from a peripheral device that
activates the TRQ (interrupt request) pin on the 65816. When the 65816 senses an
active IRQ) signal, it stops executing the current program and switches to another
program, called an interrupt handler, to deal with the source of the interrupt. When
the handler ends, control returns to the original program and execution continues.

It is easier for a program to deal with input devices that interrupt the system
because there is less risk of missing incoming data. If the device does not interrupt,
the program must periodically check its status to see if the device has data ready.
If the program does not check often enough (perhaps because it is executing a time-
consuming subroutine), it will get behind and lose data.

Some of the sources of IRQ interrupts on the Gs are the serial ports, the mouse,
the keyboard, the clock, the video controller, and the Ensoniq DOC. The serial
ports, for example, can be programmed to generate interrupts when they receive
data. The interrupt handler will then read the data and store it in a buffer so that
it could be retrieved by the program when it is ready for more input.

If you set the interrupt disable flag in the 65816 status register, the 65816 will
ignore IRQ interrupts. You may want to do this if your program is in the middle of
a critical timing loop or if the program is not re-entrant (capable of being called
while it is in use) and there is a possibility the interrupt handler may call the
program recursively. In general, interrupts should be left on at all other times.

When an IRQ interrupt occurs, the 65816 takes one of two actions, depending
on its current mode. In native mode, it pushes the program bank register, the
program counter, and the status register on the stack. In emulation mode, only the
program counter and the status register are pushed. Then the 65816 clears the
decimal mode flag in the status register and sets the interrupt disable flag so that
nothing will interrupt the interrupt-handling subroutine. Finally, the 65816 passes
control to a vector in bank $00 associated with IRQ interrupts. As shown in table
2-2, the position of this vector depends on the operating mode. The interrupt
handler ultimately passes control to a user vector at $3FE/$3FF in bank $00—that
is, if control is not handled internally.

An interrupt handler must end with an RTI instruction because RTI pops the
values pushed on the stack when interrupt processing begins. Because only the

38 Programming the 65816 Microprocessor

Table 2-2: 65816 Interrupt Vectors

Emulation Mode Vectors Native Mode Vectors
SO0FFFE/FF IRQ, BRK S00FFEE/EF 1RQ

S00FFFC/FD Reset SOOFFEA/EB NMI

S00FFFA/FB NMI S00FFES/E9 Abort

$00FFF8/F9 Abort SO0FFEG/ET BRK

S00FFF4/F5 COP | S00OFFE4/E5 COP

SOOFFFC/FD Reset

program counter and the status register are saved on the stack, the interrupt handler
must preserve the states of the other 65816 registers it alters,

The preferred way to install interrupt handlers in a ProDOS environment is to
use the ProDOS ALLOC—INTERRUPT command. (See chapter 10.) In these cases
the interrupt handler does not have to preserve registers and can end with an RTS
(ProDOS 8) or RTL (ProDOS 16) instruction. This is because the internal ProDOS
interrupt dispatcher takes care of saving registers and returning control properly.

Other Hardware Interrupts

Devices can also generate NMIs (nonmaskable interrupts). The 655816 handles them
just like IRQs except that it uses a different interrupt vector and it never ignores
them even if the interrupt disable flag is set. A peripheral might cause an NMI if
it has to take over the system in an emergency situation, such as an impending loss
of power. The NMI interrupt handler in the Gs eventually passes control to a user-
installed subroutine whose address is stored at $3FC/$3FD in bank $00.

A Reset interrupt occurs when you turn the s on or when vou press Control-
Reset. When Reset is caused by the power turning on, the system boots the start-
up disk. When power is turned on, Resets are handled by eventually passing control
to the subroutine whose address is stored at $3F2/$3F3 in bank $00, but only if the
byte at $3F4 is equal to the number generated by exclusive-ORing the number at
$3F3 with the constant $A5. If it is not, the system is rebooted instead.

The last type of hardware interrupt is the Abort interrupt. It is supposed to be
generated by a hardware memory-management unit when it detects a program
trying to access memory that is off-limits to it. On the s, only cards installed in
the memory expansion slot can generate Abort interrupts.

The addresses of the vectors for NMI, Reset, and Abort interrupts are shown in
table 2-2.

Interrupts 39

Software Interrupts

You can also generate interrupt signals by executing a BRK or COP instruction
inside a program. The 65816 reacts to such interrupt signals just as it reacts to an
active TRQ signal, but it uses a different interrupt vector. Neither the BRK nor the
COP instruction can be masked by the interrupt disable flag in the status register.

BRK and COP have separate interrupt vectors but are handled in much the same
way by the Gs monitor. (The COP instruction was designed to pass control to a
65816 coprocessor chip, but such a chip is not available yet.) When vou start up
ProDOS 8. however, both vectors eventually pass control to the same RAM vector
at $3F0/$3F1 in bank $00. This vector points to a monitor subroutine that displays
the contents of the 65816 registers.

BRK and COP are both two-byte instructions even though the second byte has
no particular meaning. The BRK or COP handler you install can examine the second
byte and interpret it any way it wishes. It is essentially a parameter that is passed
to the handler.

Note that in emulation mode, BRK and IRQ interrupts share the same interrupt
vector. To distinguish between them, the system examines the break bit in the
status register; if it is 1, the interrupt was caused by a BRK instruction and the cs
monitor passes control to the vector stored at $3F0/$3F1 instead of to that at $3FE/
$3FF.

CREATING PROGRAMS WITH THE APPLE llGs
PROGRAMMER’'S WORKSHOP

The Apple Ilcs Programmer’s Workshop (APW) contains all the programs and
support files you will need to develop 65816 assembly language programs on the
Gs. There are four key modules:

« The shell (command interpreter)

= The text editor

* The linker

* The 65816 assembler
By acquiring APW-compatible compilers, you can also use APW to develop programs
written in higher-level languages like C and Pascal.

To begin writing a 65816 program, start up APW and ensure that the active

language is 65816 assembly by entering the ASM65816 command from the shell.
(This language is the initial default, so you can skip this step if you have not switched

to another language.) You must choose the correct language because the assembler
will not deal with source files created by the editor when another language is active.

40 Programming the 65816 Microprocessor

The next step is to invoke the editor with the command:

EDIT pathname

where “pathname” represents the name of an existing source file or the name of the
new file yvou want to create.

Now the hard part: you must write your application! To do this requires an
intimate knowledge of the syntactical requirements of the assembler.

Source Code Format

Lines of assembly language source code are made up of four fields, separated by
one or more spaces, in the following order:

o Label field (usually optional)
* Instruction field
* Operand field

= Comment field (optional)

The major exceptions are comment lines, which begin with “;”, “*”, or “I" svmbols.
You can put whatever you like in these lines because they are ignored by the
assembler,

The Label Field. The label field optionally contains a symbolic label, usually for
marking a position within the program to which other parts of the program can
refer. Labels can also be associated with numeric constants with the EQU and
GEQU assembler directives (see below),

A label must begin with an alphabetic character (A to Z) or an underscore (__).
Subsequent characters can be alphabetic (A to Z), numeric (0 to 9), the tilde (), or
the underscore (__). The maximum length is 235 characters. The assembler usually
ignores the case of alphabetic characters, but you can make it case-sensitive with
the CASE ON directive.

The Instruction Field. The instruction field contains the 65816 instruction or an
assembler directive. Directives are commands to the assembler, not 65816 instruc-
tions. They tell the assembler to do such things as set or clear internal status flags,
define symbols, allocate data storage areas, save object code to disk, and create
mMacros.

If the label field contains an entry, the instruction field must not be blank: if no
instruction is wanted, use the ANOP (assembler no operation) directive. Unlike
some assemblers, the 65516 assembler does not allow you to define lines that contain
only a label.

Creating Programs with the Apple 11cs Programmer’s Workshop 41

The Operand Field. The operand field contains the addressing mode for the
instruction or a parameter for the assembler directive. It may be blank if the
instruction or directive requires no explicit operand.

The Comment Field. The comment field, which begins with a ; symbol, can contain
any explanatory text you like. Use it to document your program code.

The source code shell for a typical 65816 program looks something like this:

KEEP MyProgram jName of object code file
MCOPY Macros.Mac ;Name of macro file
CodeSegl START ;5tart of main code segment
USING GlobalData +1t uses GlobalData data
Private NOP i"Private" 15 a local label
<put program code
here=
MySub ENTRY iA global entry point
<more program code
here>
END
CodeSeg?2 START iAnother code segment
USING GlobalDatsa ;It can use GlobalData too!
JSR CodeSeqgl iYou can access through
JSR MySub iglobal entry points.
JS5R Private iError!!! But not local anes!

<code for another

segment here>

END

COPY DOtherCode.Asm ;Mame of other file to include
GlobalData DATA

<pul data allocatien

statements here>
END

The “KEEP pathname” directive saves to disk the object code generated by the
assembler under names of the form “pathname. ROOT” (for the first code segment
in the program) and “pathname.A” (for all other segments, if any). The ProDOS file
type code for these files is SB1 and the standard mnemonic is OB]. The KEEP
directive must appear before the first START directive.

"MCOPY pathname” tells the assembler the name of the file in which macros
referred to in the source file are defined. Macros will be deseribed in greater detail
below.

"COPY pathname” tells the assembler to load the specified source file and assem-
ble its statements. On completion, assembly continues with the next line in the
main file. Use it to include standard source code fragments in your main source
program file.

All 65816 instructions in a program source file must fall inside one or more code
segments defined by START and END directives. START marks the beginning of a

42 Programming the 65516 Microprocessor

code segment and must be associated with a label that identifies the subroutine or
main program in the segment. END marks the end of the segment.

A single source file may contain any number of code segments. The advantage
of partitioning a program into several segments is that all labels defined inside the
segment are local to the segment. This means that the same labels can be reused
in another segment without generating an assembly error. This is especially con-
venient if you are developing extremely large programs in which the risk of symbol
duplication is great.

The label used with the START directive is global, which means that it cannot
be used as a label anywhere else in the program. It identifies the primary entry
point to the subroutine contained in the segment. You can use the ENTRY directive
to define other global entry points into the subroutine, if you wish. Like START,
ENTRY requires a label.

You can define program segments that contain only data (no instructions) with
the DATA directive. A data segment must end with the END directive.

As vou might expect, the labels inside a data segment are local to that segment,
although the name of the data segment is global. You can, however, associate a data
segment with a code segment so that the data segment’s labels, in effect, become
local to the code segment as well. To do this, use the “USING DataSegName”
directive. A data segment may be used by any code segment in this way.

Local and Global Labels

You will probably want to associate symbolic labels to numeric constants to make
your source code easier to understand and to debug. You ean do this with the EQU
{equate) or GEQU (global equate) directives.

Here are some examples:

True GEGQU $8000 ;takes effect throughout program
BitPos EGU 3 jtakes effect in current segment

CEQU creates a global constant—one that takes effect in every code and data
segment in the source file. The same label may not be redefined elsewhere in the
program.

EQU creates a local constant, which takes effect only inside the segment in which
the constant was defined. EQU labels can be redefined in other segments. If an
EQU label has the same name as a GEQU label, the EQU label takes precedence.

ProDOS 16 Entry Conditions

Just betore ProDOS 16 passes control to an application, it puts the system into a
standard operating state:

* full native mode (m=0, x=0, ¢=0)

» the X and Y registers are zero

Creating Programs with the Apple 11cs Programmer’s Workshop 43

o the A register contains the 1D tag for the program
e shadowing of the text screen is on
« shadowing of the graphics area is off

» /O shadowing and language card operation is on

(The concepts of ID tags and shadowing will be explained in chapter 4.)

In addition, ProDOS 16 reserves a space in bank $00 for use as a direct page and
stack area. This is normally a 1K space, but can be changed using advanced assembly/
linking techniques. On entry to the program, the direct page register contains the
address of the first byte in this space and the stack pointer points to the last byte
in the space.

Mode Considerations

After ProDOS 16 loads an executable application into memory, it puts the 65816
into full native mode with 16-bit A, X, and Y registers; it then passes control to the
beginning of the first code segment. This means the program does not have to
change modes with XCE or REP if it needs to run in full native mode.

The assembler must be told of any changes in the size of the accumulator and
index registers so that it can assemble the following instructions correctly:

LDA #immediate SBC #immediate
LDX #immediate EOR #immediate
LDY #immediate BIT #immediatle
ADC #immediate ORA #immediate
AND #immediate

The assembler initially assumes settings of LONGA ON (16-bit accumulator) and
LONGI ON (16-bit index registers). LONGA and LONCI are directives that appear
in the instruction field of a line of source code. If the directive is set to OFF, the
assembler considers the corresponding register to be 8 bits in size.

Any time vou change register sizes using REP or SEP, you must also tell the
assembler by adjusting LONGA and LONGI to the appropriate values.

Numbering Systems

The APW assembler understands many different numbering systems. The ones you
will use most often are decimal, hexadecimal, and binary. To indicate which system
you are using, place a special identification character in front of the number:

44 Programming the 65816 Microprocessor

% Hexadecimal number (for example, $FFAD)
% Binary number (for example, %01100111)

No special character is needed for a decimal number, because decimal is the defanlt
numbering system.

Isolating the Words in a Long Address

You often need to load a register with the low- or high-order word of a particular
address. Loading the low-order portion is easy:

LDA #Address sLoad address (low)

Because the A register (or X, Y) is 16 bits in size, the upper 8 bits of Address are
ignored. To load the high-order portion, you must append “|-16” to the address
operand (which means “shift right by 16 bits”) or precede it with “" as shown in
the following examples:

LDA #Address|-1b ;Load high-erder word
LDA #*Address i(alternative method)

In both cases, the bank portion of the 24-bit address is the low-order 8 bits of the
accumulator. The top 8 bits are zero.

For PEA operations, do not include the “#" because the addressing mode is
absolute, not immediate. To push the two words of an address on the stack, do this:

PEA fAddress|-186 iPush address high
PEA Address :Push address low

(The APW assembler does not allow an “Address operand for PEA instructions.)
This is the preferred technique for pushing address pointers because it does not
require using a 63816 register.

Forcing Addressing Modes

When you specify an address as an operand, the APW assembler normally considers
it to be an absolute address, as opposed to a long absolute or direct page address,
and assembles the instruction accordingly. Exceptions are symbolic addresses de-
fined by EQU or GEQU directives; here, APW is able to determine the appropriate
addressing mode.

Using absolute addresses may or may not be appropriate, depending on the state
of the data bank register. If the symbol for the address identifies a location inside
the program itself. absolute addressing is improper if the data bank register is not
the same as the program bank register. In this situation you can either make the

Creating Programs with the Apple 11Gs Programmer’s Workshop 45

two banks the same (with PHK, PLB instructions) or force absolute long addressing
by preceding the name of the address label with the > symbol.

For example, to load the A register with whatever is stored at MyAddress, execute
the following code:

LDA MyLabel iUse absolute long addressing

This forces the 65816 to read the value from the program bank as intended.
Similarly, vou can force direct page addressing with the <" symbol and absolute
addressing with the “" symbol:

LDA <MyAddress iForce direct page addressing
LDA [MyAddress :Force absolute addressing

You would use these only if the assembler would normally assemble these instruc-
tions using a different addressing mode.

Data Allocation Directives

You will use data allocation directives to reserve space for data inside the program,
or for storing specific values inside the program. To reserve space, use the DS
directive;

DS 45 iReserve 45 byles

The operand of the directive is the number of bytes to reserve. The line containing
a DS directive may contain a label.

To store specific values in the object code, use the DC (define constant) directive
instead of DS. It is of the form:

label DC constant_def

where constant _def defines the type of data to be stored. Here are examples of the
most common constant definitions:

11°22 One byte

12'396° Two bytes (one word)
1'298° Two bytes (one word)
14°$8000° Four bytes (long word)
H'FE128A° Hexadecimal digits
B'100110° Binary digits

C'Text String’ Sequence of characters

The Ix definition (x is an integer from 1 to 8), stores multiple bytes in memory, low-
order bytes first. This is the order expected by 65816 instructions. If x is omitted,

46 Programming the 65816 Microprocessor

two-byte words are stored. The number specified can be in binary, decimal, or
hexadecimal form.

The H definition stores successive pairs of hexadecimal digits in successive mem-
ory bytes. (Any spaces in the digit string are ignored.) If an odd number of digits is
specified, the low-order four bits of the last byte will be set to 0.

The B definition stores successive groups of eight binary digits in successive
memory bytes, ignoring any spaces, If the number of digits specified is not an even
multiple of eight, the last byte is padded on the right with 0 bits.

The C definition stores the ASCII codes for the specified character string in
memory. The MSB ON and MSB OFF directives control the setting of the high bit
for these string constants, The default is MSB OFF, meaning that bit 7 of each byte
is 0. Use MSB ON if vou wish to force bit 7 to 1.

Several constant definitions can be included on one line by separating them with
commas. For example, the command:

DC I1'0',I2"$FDDA' ,H'AE!

stores the bytes $00 SDA SFD SAE in the object code at assembly time.
To define several items of the same general type, put the items, separated by
commas, inside the single quote marks of the constant definition string;

DC [2'34,%A321,186'" ;Stored as 22 00 21 A3 10 00

Another nice feature of the DC directive is that it gives you the ability to put a
repeat count in front of a constant definition. For example, to generate six copies
of $FDED, use the following command:

DC &I1'S$SFDED!

Notice that in this example the “2” after the “I” was omitted. As indicated above,
the assembler assumes it is dealing with words in this situation.

Listing Directives

The APW assembler supports several directives that affect the output of the assembly
process:

» LIST (display object code)
* SYMBOL (display symbol table)
* ABSADDR (display code addresses)

Creating Programs with the Apple I1Gs Programmer’s Workshop 47

« INSTIME (display instruction cycle times)

¢ GEN (display macro expansions)

These directives can either be ON or OFF; put the ON/OFF status indicator in the
operand field. The defaults for all these directives is OFF.

Creating the Macro File

A macro is an assembler command that expands into a series of 65816 instructions
(or assembler directives) during the assembly process. By assigning commonly used
short code fragments to a macro command, vou can develop programs much more
rapidly and make them much more readable at the same time.

As the next chapter will discuss, the Gs supports many tool set functions that you
invoke by loading the X register with an ID number and then doing a JSL to
$E10000. You do not have to memorize these ID numbers, because Apple provides
with APW a set of macro definitions that associates easy-to-remember names with
each of the LDX/JSL function calls.

You can define powerful macros for use with the APW assembler. For a compre-
hensive description of how to create macros, see the APW Assembler Reference. To
get a feel for how to create macros, look at this one, called PushAddr, which pushes
the address of a program or data area on the stack:

MACRO :Start macro definition
Llab PushfAddr &addr :Name of macro, parameters
tlab PEA saddr|-16 ;Body of macro

PEA taddr ;Body of macro

MEND +End of macro

To invoke this macro, you would place a line such as:

MyLabel PushAddr MyEecurd

in your program source code. When the assembler expands the macro into 65816
instructions. it replaces &lab with MyL: bel and &addr with MyRecord wherever
they appear in the body of the macro definition. For the above example, this means
the following statements would be generated:

MyLabel PEA MyRecarﬁ-lB
FEA MyRecord

The MACRO directive marks the beginning of the macro definition. The next line
contains the name of the macro in the instruction ficld. It also defines the parameters
you can pass to the macro; their names begin with the & symbol. For PushAddr,
one parameter is a label appearing in the label field (&lab); the other is an address
appearing in the operand field (&addr). Multiple nonlabel parameters appear in the

48 Programming the 65816 Microprocessor

operand field of a macro, separated by commas. The MEND directive marks the
end of the macro definition.

With conditional assembly techniques you can define macros whose behavior
depends on many things, such as whether the parameters you specify are immediate
values or addresses. Examples of maeros like this are given in listing 2—1. (These
macros are ideal for passing parameters to tool set functions and for retrieving
results, as will be shown in the next chapter.) Consult the APW Assembler Reference
for a detailed explanation of how to use these advanced macro features.

Almost every program vou write for the ¢s will use macros, primarily the ones
that assign symbolic names to tool set functions. The macros must appear in a
separate file that is referred to by an "MCOPY pathname” directive in the primary
source code file.

APW comes with a program called MACGEN that vou can use to extract the
macros needed by a program from the standard APW macro files and to put them
in a custom macro file. For example, suppose your source program is called WIN-
DOWS.ASM and it wuses macros defined in MI6.QUICKDRAW and
M16.WINDOW. To place all the macros used by the program in a file called
WINDOWS.MAC (the file named in the program’s MCOPY command), type in
this command:

MACGEN WINDOWS.ASM WINDOWS.MAC M16.QUICKDRAW M16.WINDOW

MACGEN scans the source file (the first file named) for macro references and places
their definitions in the macro file (the second file named). It searches the third and
fourth files (and any more you might specify on the command line) for these macro
definitions. If not all macros are found, MACGEN asks vou to enter the name of
another maecro file to search; it keeps asking until it finds every definition.

Quite often vou will create a macro file, then change the program slightly so that
it uses a few new macros. To add just the new macros to the existing program macro
file, specify the program macro file as one of the MACGEN search files:

MACGEN WINDOWS.ASM WINDOWS.MAC WINDOWS.MAC M16.WINDOW

By doing this, you avoid having to specify the names of all the system macro files
containing the macros you already have in the program macro file.

Creating an Application with APW

The APW assembler processes a 65816 source code file and converts it into an
object code file. The resultant object code file is not the executable program,
however. Instead, it contains code modules that the APW linker must process first.
It is the linker that creates the executable ProDOS 16 load file. A load file contains
the program code and a header that tells the System Loader (the tool set responsible

Creating Programs with the Apple 11cs Programmer’s Workshop 49

for loading programs into memory) how to make the program run properly at the
load address.

Object code files produced by the assembler are in a special language-indepen-
dent format defined by Apple. High-level language compilers that work in the APW
environment (notably C and Pascal) use this same format. The linker does not care
which language created the object code, so you can develop portions of a program
in different languages, then combine them with the linker to create the final appli-
cation.

The APW command for assembling and linking simple applications in one step
is ASML. If you need to perform special linking operations (such as including code
libraries), vou have to separately process a linker control file written in the LINKED
language instead; for information on the LINKED language, see the APW Assembler
Reference.

After assembling and linking, APW creates an executable ProDOS 16 load file
with a file tvpe code of $B5 (the standard mnemonic is EXE). This program can be
run from the APW shell simply by typing in its name. When it ends (with an RTL
instruction or a ProDOS 16 QUIT command), control returns to the shell.

Once you have thoroughly debugged the program, you should change its file
type code to $B3 (the mnemonic is $16) so that ProDOS 16 will recognize it as an
application. Do this with the APW FILETYPE command:

FILETYPE pathname $B3

where $B3 is the new file type code. You can specify the S16 mnemonic instead of
the hexadecimal code, if vou wish.

An 516 program can be executed from the APW shell, but it will crash the system
if it ends with an RTL instruction. This is because the shell removes itself from the
system when it passes control to the program, so it will not be there on return.
(With EXE programs the shell stays intact.) The moral is to always end a program
with a ProDOS QUIT command. This command is described in chapter 10.

REFERENCE SECTION
Table R2-1: The Complete 65816 Instruction Set

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
ADC add to accumulator $69 #immediate 2' Nv....ZC
with carry $6D addi 4!
$6F long 5'
$65 dp 3t

50 Programming the 65816 Microprocessor

Mnemonic Operation

Instruction

AND

logical AND with

accumulator

Effect on Flags

Addressing NV-BDIZC e=1
Opcode Mode Cycles NVmxDIZC e=0
$71 (dp),Y 53
$77 [dp].Y i
$61 (dp.X) 6'
$75 dp.X 4!
$7TD addr, X 43
TF long, X 5
$79 addr,Y g
8§72 (dp) 5
$67 [dp] 6'
$63 sr, S 4!
$73 (s1,8),Y ks
$29 #immediate 2' N.....2
$2D addr 4!
32F long 5'
$25 dp 3
$31 (dp).Y gi:a
837 [dpl.Y 6
521 (dp.X) 6'
$35 dp.X 4!
$3D addr, X 4"
$3F long, X 5!
$39 addr,Y 4
$32 (dp) 5!
$27 [dp] 6'

Reference Section 51

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
$23 st.S 4!
£33 (sr,8)Y 7
ASL arithmetic shift left SOE addr 6° Ni s o 26
$06 dp 5°
S0A A 2
$16 dp.X 62
$1E addr.X i
BCC branch on carry $90 rel IR aEEn P
clear (C=0)
BCS branch on carry set $B0 rel P aumes i
(C=1)
BEQ branch on equal $FO rel ghs e
(Z=1)
BIT Logically AND the $89 #immediate 2' NV....2Z.
accumulator with $9C addr 4
the operand;
transfer high-order 524 dp 3!
bits to N and V 1
(but not if ™ dp.X 4
#immediate) $3C addr, X g2
BMI branch on minus $30 rel gh® R,
(N=1}
BNE branch on not $D0 rel gh® S
equal
(Z=0)
BPL branch on plus $10 rel g T

(N=0)

52 Programming the 65816 Microprocessor

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
BRA branch relative $80 rel A T
always
BRK" break interrupt $00 {stack} 7° sz wilTie
BRL branch relative $52 longrel 4 SR
long
BVC branch on overflow $50 rel - i v
clear (V=0)
BVS branch on overflow $70 rel 2= e
set (V=1)
CLC clear carry flag 518 {implied} 2 . {
CLD clear decimal flag ~ $DS§ {implied} 2 wea wiw O s
CLI clear IRQ disable $58 {implied} 2 0.
Hag
CLV clear overflow flag $BS {implied} 2 Wi we wa
CMP compare with $CY #immediate 2' N ZC
accumulator $CD adide 4
3CF long 5!
$C5 dp g
$D1 (dp),Y . R
$D7 [dp]Y 6'
$C1 (dp.X) 6'
$D5 dp,X 4!
$DD addrX 43
$DF long, X 5!

Reference Section

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
$D9 addr,Y VR
$D2 (dp) 5'
$C7 [dp] 6'
$C3 sr,S 4
$D3 (s1,S).Y 7
COP co-processor 502 {stack} i S) |
interrupt
CPX compare with X SE0 #immediate 2 Niaare ZC
SEC addr 3’
SE4 dp o
CPY compare with Y $C0 #immediate 27 Naicowi w 2B
s$CC addr 4
$C4 dp 1
DEC decrement $CE addr 6° N.....Z2.
$C6 dp 5°
$3A A 2
$D6 dp,X 6°
$DE addr,X i
DEX decrement X SCA {implied} 2 N.....Z
DEY decrement Y 588 {implied} 2 Maciesice Z
EOR exclusive OR with ~ $49 #immediate 2' , [
accumulator $4D i 4
$4F long 5!

54 Programming the 65816 Microprocessor

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
%45 dp 5
851 (dp).Y 57
$57 [dpl.Y 6
$41 (dp.X) 6
$55 dp.X 4'
$5D addr, X 413
$5F long, X 5!
$59 addr,Y 43
$52 (dp) 5
$47 [dp] 6'
$43 sr,$ 4!
$53 (sr,8).Y 7
INC increment SEE addr 6 Naa 25
SE6 dp 5
S1A A 2
$F6 dp.X 62
$FE addr,X 7
INX increment X $ES {implied} 2 N. Z
INY increment Y SCH {implied} 2 o BT 2
IMP jump $4C addr B emeswss
36C {addr) 5
7C (addr, X) 6

Reference Section 55

Effect on Flags

Instruction Addressing NV-BDIZC e=1

Mnemonic Operation Opcode Mode Cyeles NVmxDIZC e=0
JML jump long $5C long I e S
sDC |addr] 6 aewceens .
JSL jump to long %22 long 8 SR

subroutine

ISR jump to subroutine $20 addr 6 SRR
$FC (addr,X) 8§

LDA load the A9 #immediate 2' s [Z.
accumulator SAD sl 4!
SAF long 5'
$AS dp 3"
$B1 (dp).Y i
$B7 [dpl.Y 6'
$A1 (dp,X) 6'
$B5 dp,X 5'
$BD addr, X 53
SBF long, X 6'
B9 addr,Y ¥
$B2 (dp) 5'
$AT [dp] 6'
$A3 sr,§ 4!
$B3 (sr,S),Y i
LDX load the X register $A2 #immediate 27 M o wie 2.
SAE addr 4
$A6 dp g’

56 Programming the 65816 Microprocessor

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
$B6 dp.Y 4
SBE addrY 4"
LDY load the Y register $A0D #immediate 2 M siwvils
SAC addr 4
$A4 dp 3’
B4 dp.X 4
$BC addrX 4
LSR logical shift right 34E addr 6" 0 .2C
$46 dp 5
$4A A 2
$56 dp.X 6
$5E addr, X 7
MVN move block $54 sre.dest 7 SR EE R e
backward
MVP move block $44 sre, dest T s e v
forward
NOP no operation SEA {implied} 2 e Cae
ORA logical OR with %09 #immediate 2' | T
accumulator 0D Ak 4!
$0F long 5!
305 dp 3
$11 (dp).Y 5
317 [dpl.Y 6'
$01 (dp.X) 6'

Reference Section 57

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
515 dp,X 4!
$1D addr,X g+
$1F long, X 5'
$19 addr,Y 42
$12 (dp) 5'
$07 [dp] 6'
$03 sr,§ 4!
$13 (sr.S),Y th
PEA push effective $F4 addr 5 S i
address
PE1 push effective $D4 (dp) 6 o SR
address indirect
PER push effective 562 rel 6 e .
address relative
PHA push the $48 {stack} 3! i e i s
accumulator
PHB push data bank %8B {stack} B e i ‘.
register
PHD push direct page 0B {stack} 4 e
register
PHK push program bank $4B {stack} 3 AR i
register
PHP push status $08 {stack} 3 e
register
PHX push the X register $DA {stack} < L i

98 Programming the 65816 Microprocessor

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cyeles NVmxDIZC e=0
PHY push the Y register $5A {stack} < A, .
PLA pull the %68 {stack} 4 M v ¢ Z.
accumulator
PLB pull data bank SAB {stack} 4 [[Z.
register
PLD pull direct page $2B {stack} 5 Neiaiaa Zi
register
PLP pull status register $28 {stack} 4 NVmxDIZC
PLX pull the X register $FA {stack} 47 | B
PLY pull the Y register $7A {stack} ry N.....2.
REP reset status bits 3C2 #immediate 3 NVmxDIZC
ROL rotate left $52E addr 6° © E TR b
326 dp 5
52A A 2
$36 dp.X 6
$3E addr, X i
ROR rotate right $6E addr 6° N..... ZC
$66 dp 5°
$6A A 2
$76 dp.X 6
37E addr, X 7
RTI return from $40 {stack} 6° NvmxDIZC

interrupt

Reference Section

59

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation Opcode Mode Cycles NVmxDIZC e=0
RTL return from $6B {stack} B s
subroutine
long
RTS return from $60 {stack} . [.
subroutine
SBC subtract from SE9 #immediate 2' NV....Z2C
accumulator with SED sl 4
carry
SEF long 5
$E5 dp <
$F1 (dp),Y el
$F7 [dp].Y 6'
3E1 (dp,X) 6'
$5F5 dp,X 4
$FD addr, X 43
$FF long, X 5
$F9 addr, Y 4"
$F2 (dp) 5'
SE7 [dp] 6'
SE3 sr, S 4!
$F3 (sr,8),Y T
SEC set carry flag $38 {implied} A P i 1
SED set decimal flag 3F8 {implied} 2 MPUI T,
SEI set IRQ disable $78 {implied} 2 G e e : (o

flag

60 Programming the 65816 Microprocessor

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic Operation _ Opcode Mode Cycles NVmxDIZC e¢=0
SEP set status bits SE2 #immediate 3 NVmxDIZC
STA store the 38D addr # e s
accumulator SSF i 5!
$85 dp 3!
$91 (dp).Y 6"
$97 [dpl.Y 6'
581 (dp.X) 6'
595 dp,X 4!
$9D addr,X 5
$9F long, X 5'
$99 addr,Y g
$92 (dp) 5
$87 [dp] 6'
$83 st,S 4!
$93 (sr,5),Y T
STP stop the processor $DB {implied} ¥ R o e
STX store the X $8E addr B e e e s
register 486 a6 57
$96 dp.Y 'y
STY store the Y register $8C addr -
$84 dp 3
%94 dp.X 4

Reference Section 61

Effect on Flags

Instruction Addressing NV-BDIZC e=1
Mnemonic _ Operation Opcode Mode Cycles NVmxDIZC e=0
STZ store zero $9C addr & G ae
$64 dp 3!
$74 dp. X 4'
59K addr, X 5'
TAX transfer A to X SAA {implied} 2) ET e Zi
TAY transfer A to Y $AS8 {implied} 2 N
TCD transfer C to D %58 {implied} 2 N. 2.
TCS transfer C to stack $1B {implied} e ST
pointer
TDC transfer D to C $7B {implied} %) (TR
TRB test and reset bits $1C addr e L
s14 dp 5
TSB test and set bits 50C addr 6" AT
$04 dp 5
TSC transfer stack %38 {implied} 2 [z
pointer to €
TSX transfer stack SBA {implied} 2 Mo o s Z.
pointer to X
TXA transfer X to A $5A {implied} 2 M von o Zi
TXS transler X to stack $9A {implied} O R :
pointer
TXY transfer X to Y fimpliedt 2 N..... Z

598

62 Programming the 65816 Microprocessor

(]
| =

Effect on Flags

Instruction Addressing NV-BDIZC ¢=1
Mnemonic Qperation Opcode Mode Cycles NVmxDIZC e=0
TYA transfer Y to A %98 {implied} 2 N.o.... Z.
TYX transfer Y to X SBB {implied} 2 Naimie s o
WAL wait for interrupt $CB {implied} 2 e e §
WDM {reserved opcode} %42 {implied} 2 S T g
XBA exchange B and A SEB {implied} 3 Nissess o2&
XCE" exchange carry and $FB {implied} 2 R

emulation status

bits

NoTes oN CycLE TiMES:
For all instruetions involving direct page, add 1 eyele if the low-order byte of the direct page register is
NON-Zero,

" Add 1 eyele if m=0. 5 Add 1 evele if e=1 and the branch is taken
2 Add 2 eyeles if m=0. across a page boundary.

* Add 1 evele if indexing across a bank houndary. % Add 1 evele if e=0.

* Add 1 evele if the branch is taken. 7 Add 1 eyele if x=0.

* 7 eveles per byte moved.

OTHER NOTES:
In the “Effect on Flags” column, 1 means the flag is alwayvs set, 0 means the flag is always cleared, and
a letter means that the fag changes depending on the result of the operation.

* In emulation mode, the B bit is set to 1 after a b XCE also affects the state of the ¢ fag.
BRK instruction.

Reference Section 63

Listing 2-1: Useful Macros for Program Development

0
1
®
L]
&
¥
"
¥
i
5
Ll
¥
"
T
i
i

PushWord Value
PushWord #Value

This macro pushes a word on the stack. [f an
address is specified ("Value"), this is done with
LDA, PHA instructions. If an immediate number

is specified ("#Value"), the number is put

on the stack with a PEA instruction.

MACRO

&LAB PushWord &Value

LCLC 4CHAR

&CHAR aAmMID tValue,1,1 ;Get 1st character
AlF "ECHARM=m#" IMMEDIATE
LLAB LDA tValue
PHA
MEXIT
.IMMEDIATE
aCHAR AMID tValue,2,100
&LAB PEA LCHAR
MEND

B L I T T T —

PushLong Value
PushLong #Value

This macro pushes a leng word an the stack. If an
address is specified ("Value"), this is done with
LDA, PHA, LDA, PHA instructions. If an immediate
number is specified ("#Value"), the number is put
on the stack with two PEA instructions.

MACRO

&lab PUSHLONG &Value
LCLC &CHAR

&CHAR AMID &vValue,1,1 ;Get 1st character
ALF "LCHARM=1sv IMMEDIATE

64 Programming the 65816 Microprocessor

]

tlab LDA

PHA
LDA
PHA

MEXIT

.IMMEDIATE
SCHAR AMID

lab DC

&
1
.
¥
¥
0
¥
-
]

MEND

PushPtr Label
Push a four byte

MACRO

tlab PushPtr

klab DC

- s o s me ma

DC
DC
DC
MEND

PoplLong DataAddr

tValue+2

dvalue

&Value,2,100

[1'8F4! ;PEA opcode
12" {4CHAR)/-16" jAddress high
[1'$F4! :PEA opcode
12" 4CHAR? ;Address low

pointer on the stack.

tLabel

11'%F4! iPEA opcode
I2'(sLabel)|-16' ;Address high
11'%F 4! ;PEA opcode
12'4Label? ;Address low

This macro pops a long word off the stack

and stores 1t at

MACRO

tlab FPopLong
dlab PLA

e e e o me ww

STA
PLA
STA
MEND

Poplord DataAddr

Datafddr and Datafddr+2.

tDataAddr
tDatafAddr

tDatafddr+2

This macro pops a word off the stack

and stores i1t at

DataAddr.

Reference Section

65

MACRO

tlab Popllord &Datafddr
tlab PLA
STA tDatafddr
MEND

STR 'a string!'

Stores the specified character string in memory
preceded by a length byte.

"
B
]
L]
Ll
0
1
]

MACRD

tLAB STR &String

LLAB DC I1'L:&5tring’
DC C"sString”
MEND

66 Programming the 63816 Microprocessor

CHAPTER 3

Using the s
Tools

Over the past several vears, Apple has spent considerable time and energy devel-
oping and promoting what it considers to be the ideal method of communication
hl'r“r'l'(.'Tl el LT)I]II}{Ill‘r user 'sll“.l d L'UIII[)H[I.'F Progran. Tl]t' L'I].US(’II TIIL’th{]. (."ﬂ“L’d d
user interface. was first popularized on the Lisa (later renamed the Macintosh XL
and the Macintosh. It is based on a desktop metaphor which goes something like
this:

The screen is the desktop

Pictorial icons on the sereen represent objects on the desktop (such as file
folders and clocks)

Rectangular, overlappable windows represent papers on the desktop

Pull-down menus at the top of the screen represent drawers in the desk

Such an interface requires a “hand” for quickly selecting papers and other objects
on the desktop and for moving them around; the computer’s hand is the mouse. To
select an object with the mouse, move the mouse pointer over the object’s icon and
click (press and release) the mouse button. To drag an object to another part of the
screen, move the mouse pointer over the nhjf.-ct, press the mouse button, move the
mouse while holding the button down, and then release the button when the object
is where vou want it to be.

A complete description of the desktop environment can be found in Apple
Computer, Inc.’s Human Interface Guidelines. (See appendix 8.) Be sure to read
this book before attempting to develop professional-quality software for the cs.

To promote the use of the desktop environment on the ©s, Apple provides an
extensive set of software tools that programmers can use to manage all aspects of
the interface. Some of these tools are built into the cs ROM; others are loaded into
RAM from disk when an application begins to run. The availability of these tools

67

means most Gs-specific programs will use them. As a result, users can concentrate
on mastering the unique portions of a new program instead of its user interface.

As will be discussed below, there are also tools that perform standard operations
more directly related to the operating system than to the desktop interface: math-
ematical calculations, interactions with /O devices, memory management, and so
0on.

The Gs tools are simply a series of 65816 subroutines called functions. For
convenience, the functions are divided into several logical groups called tool sets;
the functions in a particular tool set perform the same general type of operation:
memory management, window handling, menu handling, and other tasks.

This chapter describes the tool sets that are available on the cs and shows vou
how to access them from within programs. The process of writing new tool sets from
scratch and making them available to your applications is also covered.

TOOL SET SUMMARY

Table 3-1 shows what tool sets are available for the ¢s and gives the names of the
corresponding APW macro definition files. It also indicates whether the tool sets
are located in ROM or whether they must be loaded into RAM from disk by the
application. (RAM-based tool sets must be stored in the SYSTEM/TOOLS/ subdi-
rectory of the boot disk. See chapter 10.) Keep in mind that as bugs are eradicated,
Apple will begin to move more of the RAM-based tools to ROM in order to free up
disk space and improve program performance.

Later chapters will examine most of the common Gs tool sets by describing their
functions and showing how to use them in programs. This chapter merely summa-
rizes the main features of each of the standard tool sets.

Tool Locator

The Tool Locator is responsible for the smooth, concurrent operation of all the cs
tool sets. Most applications use it explicitly for only two reasons: to load RAM-based
tool sets from disk and to install custom tool sets. Many tool sets use the Tool
Locator implicitly, primarily to save a pointer to a general-purpose workspace in a
Work Area Pointer Table (WAPT) maintained by the Tool Locator.

Memory Manager

An application uses the Memory Manager to allocate blocks of memory that have
not previously been reserved by the operating system or another application. This
means programmers no longer have to worry about memory conflicts. The other
major function of the Memory Manager is to free up previously allocated blocks.

68 Using the cs Tools

Table 3-1:

The Standard Apple I1Gs Tool Sets

Tool Set

Number Tool Set Name APW Macro File
1 *Tool Locator M16.LOCATOR
2 *Memory Manager M16.MEMORY
3 *Miscellaneous Tool Set M16.MISCTOOL
1 *QuickDraw 11 M16.QUICKDRAW
3 *Desk Manager MI16.DESK

6 *Event Manager M16. EVENT

7 *Scheduler MI16.SCHEDULER
8 *Sound Manager M16.SOUND

9 *DeskTop Bus Tool Set M16.ADB

10 *Floating-Point Numeries (SANE) MI16.SANE

11 *Integer Math Tool Set MI16.INTMATH
12 *Text Tool Set MI16. TEXTTOOL
13 *RAM Disk Tool Set [internal use]

14 Window Manager M16.WINDOW
15 Menu Manager M16.MENU

16 Control Manager M16.CONTROL
17 System Loader M16.LOADER
18 QuickDraw Auxiliary Tool Set MI16.QDAUX

19 Print Manager MI16.PRINT

20 LineEdit MI16.LINEEDIT
21 Dialog Manager M16.DIALOG

22 Scrap Manager MI16.SCRAP

23 Standard File Operations Tool Set MI16.STDFILE
24 Disk Utilities [none]

25 Note Synthesizer MI16.NOTESYN

Tool Set Summary 69

Table 3-1: Continued

Tool Set

Number Tool Set Name) APW Macro File
26 Note Sequencer [none]

27 Font Manager MI16.FONT

28 List Manager MI16.LIST

NOTE: Tool sets marked by an asterisk (*) are in ROM.

Miscellaneous Tool Set

Applications do not often use the Miscellaneous Tool Set because it performs low-
level tasks that are usually handled by the operating system, such as assigning 1D
tags to memory blocks, setting the date and time, and enabling interrupts.

QuickDraw II

QuickDraw II is the largest and most complex of the cs tool sets. Its main duties
are to perform all drawing operations on the super high-resolution screen: activities
such as plotting points, drawing lines, filling shapes, and displaying characters. In
addition, it controls pen positioning, defines coordinate systems, and changes draw-
ing parameters (such as color, pen size, and other characteristics).

Desk Manager

The Desk Manager allows vou to install Classic Desk Accessories (CDAs) and New
Desk Accessories (NDAs) in the system. A CDA is an accessory, such as the Control
Panel, that you can call up by pressing Control-OpenApple-Esc from the keyboard.
An NDA is an accessory that you can call up in a desktop environment by selecting
its name from a pull-down menu.

Event Manager

Generally speaking, an event is the occurrence of a condition caused by an 1/O
device like the keyhoard or the mouse. The most common events are the pressing
of a key or the mouse button and the release of the mouse button. Two types of
events are not tied to I/O devices at all—update events and activate events: these
events occur when the appearance of a window needs to be changed. The Event
Manager is responsible for keeping track of events and reporting them to the
application when requested to do so.

70 Using the cs Tools

Scheduler

The Scheduler provides a mechanism for ensuring that a busy, non-reentrant pro-
gram module, such as ProDOS 16, will not be called by a program that gets control
during a system interrupt until the module is no longer busy. The main use of this
tool set is in scheduling the Control-OpenApple-Esc Classic Desk Accessory inter-
rupt. As chapter 10 will discuss, you will also use it when installing certain types of
interrupt-handling subroutines into ProDOS 16.

Sound Manager

The Sound Manager lets yvou control the behavior of the Gs's Ensonig DOC sound
synthesizer. It also includes functions for accessing the 64K RAM area dedicated to
the DOC.

DeskTop Bus Tool Set

The DeskTop Bus Tool Set lets vou communicate with input devices connected to
the Apple DeskTop Bus.

Floating-Point Numerics (SANE)

The Floating-point Numerics tool set implements the Standard Apple Numeric
Environment. It is made up of a group of functions that applications can use to
perform floating-point mathematical operations.

Integer Math Tool Set

The Integer Math Tool Set contains functions that permit the mathematical manip-
ulation of integer numbers. This tool set also contains nine convenient number
conversion utilities, which are described in appendix 4.

Text Tool Set

The Text Tool Set is important to programs that wish to use the text screen, rather
than the super high-resolution graphics sereen, for output. With this tool set, a
program can print characters to the sereen, much as traditional [le software does.
You can also use this tool set to redirect character output to a printer. The Text Toaol
Set is actually quite general: you ean use it to send characters to any port or slot or
to get input from any port or slot (or directly from the kevboard).

RAM Disk Tool Set

This tool set is for use by the operating system only; applications must not use it.
It is called to control all operations related to the RAM Disk device you can create
with the Control Panel.

Tool Set Summary 71

Window Manager

The Window Manager is responsible for all activities related to windows: creating
them, destroying them, dragging them around the screen, re-sizing them, and so
on.

Menu Manager

The Menu Manager contains the functions an application needs to create and manage
pull-down menus in the desktop environment.

Control Manager

A control is an object that can be selected to cause an immediate action or to set a
parameter that will affect a future action. With the Control Manager you can
associate various types of controls with a window. The main standard controls are
push buttons, checkboxes, radio buttons, editable text, and scroll bars. The control
manager also lets you define your own controls.

System Loader

The main function of the System Loader is to load a ProDOS 16 application (filetype
S516) or any other type of ProDOS 16 load file from disk into memory so that it can
be executed. It also takes care of two major preliminary steps: determining the size
of the application and reserving (with the Memory Manager) a block of memory at
which it can be loaded. (Some applications may require more than one block.) The
System Loader is loaded into memory when you boot a ProDOS 16 disk.

QuickDraw Auxiliary Tool Set

The Quickdraw Auxiliary Tool Set contains additional functions for the QuickDraw
1I tool set.

Print Manager

The Print Manager is a set of functions that lets you send text and graphics to a
printer instead of to the screen.

LineEdit

The Line Edit tool set lets you edit lines of text in a manner consistent with Apple’s
user-interface guidelines. It supports standard cut, copy, paste, delete, and range-
selection operations.

72 Using the as Tools

Dialog Manager

The Dialog Manager controls the use of dialog and alert boxes. Programs use these
boxes when they have important messages to display or when they want the user
to enter information.

Scrap Manager

The Secrap Manager contains functions for transferring data to and from a data storage
area called the clipboard. Using a clipboard makes it possible to easily transfer from
one program to another, or even between different modules of the same program.

Standard File Operations Tool Set

The Standard File Operations Tool Set provides standard dialog boxes to be used
when the applications need to know the name of a file to be opened or saved.

Note Synthesizer

The Note Synthesizer lets you program the Ensoniq DOC sound synthesizer to play
musical notes with user-defined instruments.

Note Sequencer

The Note Sequencer has functions that let you play back a user-definable sequence
of notes. The frequency and duration of the notes can be set by the application.

Font Manager

The Font Manager functions let you manage character fonts stored in the SYSTEM/
FONTS/ directory on disk. With this tool set, an application can easily load and
select fonts and choose font attributes.

List Manager

The List Manager lets you simplify the handling of lists of items. The items could
represent filenames, strings, fonts, color patterns, or any other group of data ele-
ments that have the same row height on the graphics screen. The items in a list can
be displayed in such a way that the user can move through the list using a vertical
scroll bar.

USING THE TOOLS

Apple has developed a standard technique for calling any function of any tool set.
To use this technique, the 65816 must be in full native mode with 16-bit X, Y, and
A registers. If it is not, an error occurs.

Using the Tools 73

Here is the procedure to follow:

L. Reserve a space on the stack for the results returned by the function (if any).
You can do this with any instruction that pushes data on the stack, although
PHA is just as convenient as any other.

2. Push on the stack all input parameters required by the function (if any).
These parameters can be numeric constants (words or long words), pointers,
or handles.

3. Load the X register with the ID number for the function:

256 # (function number) + tool set number

That is, put the tool set number in the low-order part of X and the function
number in the high-order part.

4. Make a long subroutine call (with JSL) to the system tool dispatcher at
SE10000. If calling a function for a user-defined tool set (see below), call the
user tool dispatcher at SE10008 instead.

On return, any results are on the top of the stack and must be removed with one
or more pull operations (FLA, PLX, or PLY).

If an error occurs, the tool dispatcher sets the carry flag and returns with an error
code in the accumulator.

A specific example will make it easier to understand what is involved in calling
a function. Suppose you want to use the TaskMaster function in the Window
Manager tool set. This function has two input parameters and returns a word as a
result. Here is how to call it:

PHA jCreate stack space for result (word)
PEA SFFFF jPush first input parameter (word)
PEA TaskRec|-16 ;Push second parameter (high)

PEA TaskRec i ... and (low).

LDX #$1D0OE sFunction (high) and (ool set (low)
J5S5L $E10000 ;Call the system tool dispatcher

PLA ;Pop the result into the

STA TheResult itwo bytes beginning at TheResult

It is important to understand precisely what is happening in this sequence of code.
Because the function returns a two-byte result, the first step is to push space for it
on the stack with a PHA instruction (in full native mode, this decrements the stack
pointer by two bytes; if the function had returned a four-byte result, two PHA

74 Using the Gs Tools

instructions would have been used to reserve space). Next, each input parameter is
pushed on the stack in the order dictated by the function definition. In the example,
the first parameter is a word-sized constant and is pushed with a PEA instruction.
The second parameter is a long address, so it is pushed (high-order word first) with
two successive PEA instructions.

The LDX instruction loads the X register with the tool set ($30E) and function
{($1D) numbers so that the tool dispatcher, called with the JSL $E 10000 instruction,
knows the function to which you want to pass control.

Finally, the result is pulled from the stack with a PLA instruction. If the result
was a two-word quantity, you would pull twice and the low-order word would come
off the stack first.

Remember that when you use a function which returns a result, vou must push
space for the result on the stack before calling it, and you must remove the result
when the function ends. Failure to follow these two rules will put the stack out of
kilter and could eventually cause your program to crash.

Data Types Used by Functions

The input or output parameters of a function can be one of three sizes: byte, word
(two bytes), or long word (four bytes). If a parameter represents a numeric guantity
(as opposed to an address) its data type is said to be integer for a word-sized number,
Boolean for a true/false word-sized number, and long integer for a long-word-sized
number. A Boolean parameter is one that is true (non-zero} or false (zero).

Note that addresses passed to functions are always four bytes long even though
the 63816 uses only three bytes (24 bits) to form a long address. The extra byte
(always $00) makes sure that there is always an integral number of parameter words
on the stack, which makes them easier to access with word-sized (16-bit) operations.

The data type of an address is either pointer or handle. By convention, symbolic
names for such data types end in “Ptr” or "Hndl.” A pointer is simply the address
of a data structure somewhere in memory. A handle is the address, not of a data
structure itself, but of a location that contains a pointer to the data structure. Pointers
and handles are described in greater detail in the next chapter.

Tool Set Macros

Table 3-1 (see above) contains the names of the APW macro definition files for each
cs tool set. You can extract the macro definitions your program needs with the
MACGEN command prior to assembling the program. As explained in chapter 2,
the purpose of the tool set macro files is to assign a standard symbolic name to the
LDX/JSL calling sequence for each tool set function. By convention, all function
names begin with an underscore character. The name _TaskMaster, for example,
refers to function $1D in tool set $0D (the Window Manager).

Using the Tools 75

APW also comes with a set of general-purpose macros in the M16. UTILITY file.
Three of these macros (PushWord, PushLong, and PushPtr) are particularly useful
for pushing parameters on the stack prior to making a tool set function call and are
similar to the macros listed at the end of chapter 2.

To push a parameter, use PushWord (for words), PushLong (for long words), or
PushPtr (for address pointers). PushWord and PushLong are able to push numbers
stored at an address or immediate numbers:

PushlWord MyParm ;Push the word at MyParm
PushWord #10 ;Push a 10 (immediate)
PushlLong MySize jPush the long word at MySize
PushLong #$7FFFFF 1Push a $7FFFFF (immediate)

PushPtr MyDatafirea iPush the address of MyDataSize

Notice that the arguments for the two macros invelving immediate numbers are
preceded by a “#” sign.
At assembly time, these macros are expanded into the following code sequences:

LDA MyParm

PHA jPushWord MyParm
PEA 10 iPushiWord #10
LDA MySize+2

PHA

LDA MySize

PHA iPushLong MySize

PEA $7FFFFF|-16
PEA S7FFFFF ;PushLong #$7FFFFF

PEA MyDataAreal-16
FEA MyData sPushPtr MyDataArea

Notice that the immediate forms of PushWord and PushLong push the constants on
the stack with PEA instructions. This conveniently avoids destroving the contents
of the A register (or any other register}.

The PushPtr macro pushes the address specified in its argument onto the stack
in the same way that the immediate form of PushLong pushes its numeric argument.
In fact, the only difference between PushPtr and PushLong is that PushPtr’s argu-
ment does not require a leading number sign.

The two macros listed in chapter 2 for removing results from the stack were
PopWord (for words) and PopLong (for long words). The argument for each is the

76 Using the cs Tools

address at which the result is to be stored. For example, “PopWord TheResult” is
equivalent to the following code sequence:

PLA
STA TheResult ;Foplord

and PopLong MyAddress is equivalent to:

PLA

STA MyAddress

PLA

STA MyAddress+2 ;Poplong

By using these five simple pull and pop macros and the tool set function macros,
vou can make vour source code more understandable and easier to maintain. In
addition, the chances of committing errors, such as pushing or pulling two-word
quantities in the wrong order, are minimized.

THE TOOL LOCATOR

The first tool set vou should know about is the Tool Locator because it manages all
the other tool sets. The main functions in the Tool Locator are summarized in table
R3-1 at the end of the chapter, and will be examined in more detail later in this
chapter.

Only a few Tool Locator functions will ever be needed by most applications. The
first, TLStartup, prepares the Tool Locator for operation and must be called before
using the functions it supports or functions of any other tool set. TLShutDown
“turns off " the Tool Locator and should be called just before your application ends,
after the program calls the ShutDown functions of any other tools that have been
started up. Neither TLStartup nor TLShutDown requires any input parameters,
and neither return a result.

The LoadTools function loads RAM-based tool sets from disk into memory so that
their functions can be called by an application. Its only parameter is a pointer to a
tool set load table containing a list of the 1D numbers and version numbers of the
tool sets to be loaded. For this loading scheme to work properly, the tool sets must
be stored in disk files having names of the form TOOLxxx, where xxx is the three-
digit decimal number of the tool set. In addition, these files must be located in the
SYSTEM/TOOLS!/ subdirectory of the start-up disk.

Here is an example of low to use LoadTools to load twelve standard tool sets
from disk:

PushPtr LoadTable

_LoadTools
RTS

LoadTable DC 12112t tMumber of tool sets
DC 12'14,0° iWindow Manager

The Tool Locator v

jal) [2ms,o0! iMenu Manager

nc [2'16,0! ;Control Manager

D 12*18,0! iQuickDraw Auxiliary Tool Set
DC [2t19,0! ;Print Manager

DC 12'20,0° sLine Edit

pc 12'21.,00 ;Dialeg Manager

Dc 12122,0! iScrap Manager

DC i2'23,0¢" iStandard File Operations

DC [2v25,0! iNote Synthesizer

DC I2'27,0! iFont Manager

bC [2128,01 ;List Manager

Notice how the tool set load table is constructed. The first entry is the number of
tool set entries stored in the table. Following it are two words for each tool set.
The first is the tool set number; the second is the minimum version number expected
(a value of 0 means any version will do). LoadTools returns an error if it cannot
locate the proper versions of all the tools listed. (As explained below, errors are
recorded by setting the carry flag and putting an error code in the accumulator.)

If only one tool set has to be loaded, use LoadOneTool:

PushWord TSMum itool set number
PushWord Version iversion number
_LoadOneTeool

You may want to use LoadOneTool in situations where the application can function
even if the specified tool set is not present. For example, vou could use it to try to
load the Print Manager; if the load fails (the carry flag is set), the application can
disable all printing-related commands. If you load a large group of tool sets with
LoadTools and get an error, you cannot tell which tool set is missing.

RAM-based tool sets loaded into memory with LoadTools or LoadOneTool remain
active until you call TLShutDown at the end of the program or until you call
UnloadOneTool. Whereas TLShutDown removes all RAM-based tools, Unload-
OneTool removes only one:

PushWord TSHNum stool set number
_UnloadOneTool

Use UnloadOneTool when you are through using a given tool so that the memory
it occupies will be freed up.

You cannot load RAM-based tools if the boot disk is not in a drive. If vou try,
you will get ProDOS error $45 (volume not found). To recover from this, you should
use TLMountVolume to display a dialog box asking the user to insert the boot disk.
The application can try again when the user clicks the OK button. or it can abort if
the Cancel button is clicked.

78 Using the ¢s Tools

An example of how to use TLMountVolume is given in the STANDARD.ASM
program in listing 3-1. Because TLMountVolume requires QuickDraw and the
Event Manager to be active, do not try to load tools until after you have started up
QuickDraw and the Event Manager.

THE STRUCTURE OF A TOOL SET

Each Gs tool set may contain up to 255 functions, numbered from 1 to 255. A
function number of 0 is not allowed. By convention, the first eight functions must
perform certain specific actions dictated by the operating system—other functions
can do anything the designer of the tool set wants them to do.

Of the first eight functions, two are reserved for future expansion (#7 and #8).
Here is what the other six standard functions do:

BootInit (#1). This function performs any preliminary initialization of the tool
set which might be necessary. The system monitor firmware calls it when the
system starts up or, if the tool is RAM-based, when the tool is first loaded from
disk. Applications must not call this function.

Startup (#2). This function prepares the tool set for action. An application must
call it before using any other function in the tool set. Many tool sets require
input parameters for their Startup functions; a common parameter is a bank $00
address used by the tool set as the base of a private direct page.

ShutDown (#3). This function releases any memory space allocated by the tool
set since start-up, including memory pointed to by the work area pointer table
(the WAPT is described below). An application should call this function just
before it ends.

Version (#4). This function returns the version number of the tool set (a word).
It requires no input parameters, so the calling sequence is:

PHA jspace for result
—xxxVersion
PLA jpop the version number result

The major version number is in the high byte and the minor version number
is in the low byte of the result. If the tool set is in the prototype stage, the
high-order bit of the high-order byte is set to 1.

Reset (#5). This function returns the tool set to a known, default state. It is
called when a system reset oceurs.

Status (#6). This function returns true (non-zero) if the tool set is active and
false (zero) if it is not.

The Structure of a Tool Set 79

Of these six standard functions, only two of them, Startup and ShutDown, are really
needed by most applications. In later chapters, when specific tool sets are discussed,
these will be the only reserved functions mentioned. Keep in mind, however, that
the Bootlnit, Version, Reset, and Status functions are always present—they just are
not used often.

Almost every program vou write for the ¢s will begin by loading RAM-based tool
sets from disk and calling the Startup function for each tool set the program uses.
When a program ends, it will call the ShutDown function for each tool set. To
simplify these operations, you should develop a standard program subroutine like
the one in the STANDARD.ASM program in listing 3-1 and include it in vour
program source file with the COPY directive.

STANDARD.ASM has two entry points, DoStartup and DoShutDown. Call
DoStartup at the beginning of a program to load all tools and to start up tool sets
in the proper order. (The order is important because some tool sets rely on the
presence of others before they will work.) Call DoShutDown to shut down all the
tool sets and exit the program. Depending on the program you are developing, you
may want to modify STANDARD.ASM to add or eliminate the group of tool sets it
uses, If you change the LoadTools tool table, be sure to set the leading count word
{(“11" in the example) to the proper value. You will also have to modify the tool set
start-up and shut-down sequences.

As listed, STANDARD.ASM starts the application up in the 640-hy-200 graphics
display mode. To set up 320-by-200 graphics instead, change VidMode and
XMaxClamp to $00 and 320, respectively.

Notice that STANDARD.ASM also assigns several global symbolic labels to nu-
meric constants. This is convenient, because it forces you to use the same labels in
all your programs, thus making them easier to read.

DEVELOPING YOUR OWN TOOL SET

Associated with each tool set is a table of pointers to each of its function handlers,
in function number order:

Number of functions plus 1 (4 bytes)

Address of BootInit function minus 1 (4 bytes)

Address of Startup function minus 1 (4 bytes)

Address of ShutDown function minus 1 (4 bytes)

Address of Version function minus 1 (4 bytes)

Address of Reset function minus 1 (4 bytes)

Address of Status function minus 1 (4 bytes)

80 Using the ¢s Tools

Address of Reserved function minus 1 (4 bytes)
Address of Reserved function minus 1 (4 bytes)

Address of Function #9 minus 1 (4 bytes)

Address of Function #n minus 1 (4 bytes)

This is called a function pointer table (FPT).

To install a new tool set, vou must insert a pointer to its FPT in one of the tool
pointer tables (TPT) maintained by the Tool Locator (there is a system TPT for
standard system tools and a user TPT for user-defined tools). Do this with the Tool
Locator’s SetTSPtr function:

PushWerd #%8000 ;B8000=user, O=aystem TPT
PushWord #243 1This is the tool set number
PushPtr MyFPT ;Pointer to new FPT
_SetlTSPtr ;Install pointer in TPT

The tool set number can be any number from 1 to 255 that is not already in use by
another active tool set.

The first word pushed on the stack is the SystemOrUser word. It indicates
whether you are dealing with system tool sets ($0000) or user-defined tool sets
($8000). Tool sets that are not just replacements for existing system tool sets should
be added to the user TPT.

The function handlers pointed to by the FPT can be located anywhere in memory,
but they cannot be allowed to move because the pointers to them would become
invalid. The code for a function should be re-entrant, if possible; that is, the function
should work even if it is interrupted and called by an interrupt handler or a Classic
Desk Accessory. If it is not, the function must increment the Scheduler’s busy flag
when it gets control by performing a JSL $E10064 instruction in full native mode.
If it does this, it must decrement the busy flag on exit with a JSL $E10068 instruc-
tion. Properly-designed interrupt handlers will not make tool set calls when the
busy flag is non-zero.

When a function handler gets control, the 63816 is in full native mode, and the
stack is configured as follows:

Developing Your Own Tool Set 81

parameters SP+7

JSL Return Address

JSL Return Address

«— stack pointer

The last of the two 3-hyte return addresses is caused by a JSL from the tool
dispatcher to the function handler. The first is caused by the JSL to the tool
dispatcher (at $E10000 or $E10008) itself.

This means that the parameters pushed on the stack by the application before it
calls the tool dispatcher begin at SP+7 (7 bytes past the current stack pointer value).
Note that the offset is 7, not 6, because SP points to the first byte past the last
return address, not to the return address itself.

« Warning! These offsets remain valid only if the function handler does not push
anything on the stack after gaining control. If it does, use offsets that take this
into account.

To access parameters passed on the stack in this way, use the stack relative address-
ing mode, “sr,8”. Suppose, for example, that the function has two input parameters,
the first being a word and the second a long word, and the function returns a word
result. To read the first parameter, use the instruction:

LbA 11,5 ;Get 1st parameter

The offset of 11 is the sum of the basic offset, 7, and the space occupied by all
parameters pushed after the first parameter (4 bytes for the single long word
parameter in this example). The operands for accessing the second parameter would
be 7.5 (low-order word) and 9.S (high-order word).

The function handler returns a result by storing it directly into the space for the
result on the stack. In this example, this space is at a location given by SP+13 (the
address of the first parameter pushed plus the size of the first parameter).

Before it finishes, a function must remove all input parameters (but not the result)
from the stack. It can do this by moving the two return addresses to positions x

82 Using the cs Tools

bytes higher in memory, where x is the total size of all the input parameters. The
stack pointer must then be incremented by x bytes before the function ends. For
instance, if there are 10 bytes of parameters, you would use the following code
segment:

LDA 5,5 iMove SP+1 through SP+6

STA 16,5 ; (the two return addresses)
LDA 3,5 ; up 10 bytes to 5P+15

STA 13,5

LDA 1458

STA 11,8

TSC ;Put SP in A register

CLC

aDc #10 s... add 10 to SP

TCS ;Save new 5P

A function reports errors by setting the carry flag and storing an error code in the
A register before ending with an RTL instruction. The error code actually occupies
the lower 8 bits of the A register; the upper 8 bits hold the tool set number. The
assignment of error conditions to error codes is up to the designer of the function.

If no error occurs, a function returns with the A register zeroed and the carry
flag clear. A neat way of setting the carry flag properly, error or no error, is to exit
with a CMP #1, RTL instruction sequence.

Note that a function need not preserve the contents of the X and Y registers.
The direct page and data bank (and code bank) registers cannot change, however;
they must be the same on exit as on entry. Of the status register bits, m, x, e, and
I must be unchanged and the decimal mode flag must be zero.

Error Codes

Error codes from $0001 to $000F are reserved for use by the function dispatcher.
Of these, only two are currently used:

$0001 The tool set does not exist
$0002 The tool set function does not exist

The function dispatcher may also return a $FFFF code; this means that the call to
the dispatcher was not made in full native mode.

Error codes returned by functions themselves range from $xx01 to $xxFF, where
xx represents the tool set number. One of these, $xxFF, has a special meaning,
namely, “the function is not implemented.”

Developing Your Own Tool Set 83

Work Areas

A tool set may require a private work area in which its functions can store config-
uration information and other data which must be saved between function calls. If
the work area is not located in bank $00, function #1 of the tool set (BootInit) should
reserve the space for it with the Memory Manager (see chapter 4).

Bank $00 areas are dealt with differently because they are prime real estate. Bank
$00 is the only bank in which a direct page can be set up. By convention, if a tool
set needs direct page space for a work area, the application must allocate it and pass
its address to function #2 (Startup).

The tool set must place a pointer to its work area in a table called the Work Area
Pointer Table (WAPT). (The pointer is zero if the tool set does not use the WAPT.)
It can do this with the Tool Locator's SetWAP function. When a function handler
takes control, the entry in the WAPT is always in the A (low-order word) and Y
(high-order word) registers.

If the work area is in bank $00, the first thing the function handler should do is
save the current contents of the direct page register on the stack and set the new
direct page to the work area:

PHD iSave direct page register
TCD $"C" (16-bit A register) holds d.p.

Because this pushes an extra word on the stack, the address of the last parameter
passed to the function is SP+9 and not SP+7.

Before returning to the tool dispatcher with an RTL, restore the previous direct
page with a PLD instruction.

A USER-DEFINED TOOL SET

The program in listing 3-2 shows how to install a user-defined tool set called
TimeTools. The program does this by passing a pointer to the tool set function
pointer table to the SetTSPtr function. This table holds pointers to the eight standard
functions every tool set must support and to one special function called DayOfWeek.
You can use the DayOfWeek function to return a character string containing the
name of the current day of the week.

The start-up function for the new tool set, TTStartup, expects a direct page
address (a word) to be on the stack when it is called. It places this address in the
WAPT using the SetWAP function. None of the TimeTools actually use this direct
page area; the purpose of requiring it is simply to illustrate how to deal with work
area pointers. The TTShutDown function clears the WAPT entry for the tool set
to 0.

The TTStatus function returns a Boolean (word) result indicating whether the
TimeTools are active. It returns true if the WAPT entry is non-zero (which means
that TTStartup has been called).

84 Using the ¢s Tools

The TimeTools tool set has one non-required function, DayOfWeek, which is
assigned to function #9. It expects one input parameter: a pointer to a 10-byte
buffer allocated by the application calling the function. DayOfWeek returns a char-
acter string in this buffer describing the day of the week.

DayOfWeek determines the day of the week by calling ReadTimeHex, a function
in the Miscellaneous tool set that returns all time and date parameters in binary
form (see chapter 5). It then takes the code for day of week (1 = Sunday, 2 =
Monday, and so on), converts it to an ASCIl-encoded string, and places it in the
buffer, preceded by a length byte. It then removes the input parameter from the
stack and returns.

Notice that GetDayOfWeek returns an error code of 1 if it receives a day of week
code which is 0 or above 7. It does this by putting the error code in the accumulator
and setting the carry flag by comparing the accumulator with 1.

Once the TimeTools tool set is installed, you can call its functions from anywhere
inside the installation program. To call the DayOfWeek function, for example, use
the following calling sequence:

PushPtr DOW_Buffer ;Pointer to buffer

LDX #%0901 sFunction 9 / tool set 1
JSL sE10008 s(not E10000!)

RTS

DOW_Buffer DS 10 ;Space for iength + name

The program in listing 3-2 calls DayOfWeek in this way before displaying the day
of the week on the 80-column text screen.

Notice that the JSL in this example is to location SE10008, the entry point to
the user function dispatcher, not to location $E10000.

It is important to realize that you cannot use the TimeTools tool set from another
application, because the memory it occupies is purged when the installation program
in listing 3-2 ends. In any event, the user tool pointer table is cleared when the
TLStartup or TLShutDown functions are called.

To allow a custom tool set to be used by any application, vou must install it in
the system tool pointer table. To do this, first choose a tool set number that is not
already used by any other RAM- or ROM-based tool set. Then prepare a source file
containing just the code defining the tool set. For the tool set in listing 3-2, for
example, retain the ToolSet code segment only, change TS_NUM to the selected
tool set number and change UserOrSys to $0000 to mark this as a system tool set.

Next, assemble and link the source file and then change the file tvpe code of the
EXE file created to $BA using the APW FILETYPE command. (ProDOS 16 rec-
ognizes only SBA files as svstem tool sets.) Finally, transfer the $BA file to the
SYSTEM/TOOLS/ directory on the boot disk. After loading the tool set with
LoadTools or LoadOneTool, applications can use it.

A User-defined Tool Set 85

REFERENCE SECTION

Table R3-1:

The Major Functions of the Tool Locator Tool Set ($01)

Function Stack Description of
Function Name _ Number Parameters Parameter
GetFuncPtr 0B result (L) ptr to function handler
SystemOrUser (W) 0 = system/$8000 = user
FuncTSNum (W) function (high)/tool set (low)
GetTSPtr %09 result (L) ptr to function pointer table
SystemOrUser (W) 0 = system/$8000 = user
TSNumber (W) tool set number
GetWAP $0C result (L) ptr to tool set work area
SystemOrUser (W) 0 = system/$8000 = user
TSNumber (W) tool set number
LoanOneTool SOF TSNumber (W) tool set number to load
MinVersion (W) minimum version required
LoadTools 30E ToolTable (L) ptr to tool set load table
SetTSPtr $50A SystemOrUser 0 = system/$8000 = user
TSNumber (W) tool set number
FPTptr (L) ptr to function pointer table
SetWAFP S0D SystemOrUser (W) 0 = system/$8000 = user

TLMountVolume $11

86 Using the cs Tools

TSNumber (W)
WAPptr (L)
result (W)

WhereX (W)

WhereY (W)

LinelPtr (L)
Line2Ptr (L)

tool set number
ptr to work area

1 = OK, 2 = Cancel
selected

upper left-hand X
coordinate

upper left-hand Y
coordinate

ptr to string at top of box

ptr to string below line 2

Function Stack Description of

Function Name Number Parameters Parameter
Buttom1Ptr (L} ptr to text for OK button
Button2Ptr (L) ptr to text for Cancel button
TLShutDown 503 [no parameters]
TLStartup 502 [no parameters]
UnloadOneTool §10 TSNumber (W) tool set number to unload

Table R3-2: Tool Locator Error Codes

Error
Code Description of Error Condition -
$0110 The specified minimum tool set version was not found.

NOTE: LoadTools and LoadOneTool can also return ProDOS error codes,

Reference Section 87

Listing 3-1: The STANDARD.ASM Program with Standard Tool Start-up and
Shut-down Sequences

DoStartup and DoShutdown are standard opening
and closing sequences for most programs.

Set VidMode and XMaxClamp as appropriate for the
video mode you're using (320x200 or 640x200).

All the tools referred to in ToolTable must be in

the SYSTEM/TOOLS/ dzrectory. I[f you're missing some,
remove the entry from the table, change the initial
count byte, and remove the Startup and ShutDown calls,

mE owE we W W WE wE W mE wE

DoStartup START
* Direct page equates

DeReflLoc GEGQU $0 iLONG (used for dereferencing handle)
DPAddress GEQU DeReflLoc+4 ; INTEGER (address of direct page)

* General equates:

False GEQU s0000 ;Boolean false

True GEQU $8000 ;jBoolean true

VidMode GEQU $80 ;%80 = B640x200, %00 = 320x200
XMaxClamp GEQU 640 ;Video width (B40 or 320)

* Point offsets:

v GEQU 0 iVertical position
h GEGQU 2 jHorizontal position

* Rectangle offsets:

top GEQU a
left GEQU 2
bettom GEQU 4
right GEQU &

* GetNextEvent and TaskMaster result codes:

btnDownEvt GEGU 1 smouse-down event
keyDownEvt GEGU 3 ikey-down event
autokKeyEvt GEQU 5 iauto-key event
updateEvt GEQU & jupdate event
activateEvt GEQU 8 ;jactivate event
wlnMenuBar GEQU 1 iin menu bar

1

winContent GEGQU iin content region of window

w o~

88 Using the cs Tools

winGoAway GEQU 22 iin close box
winSpecial GEQU 25 ;in special menu item

i Dialog Item Type codes:

Buttonltem GEQU 10
CheckItem GEQU 11
Radioltem GEQU 12
ScrollBarltem GEGQU 13
UserCtlItem GEQU 14
StatText GEQU 15
LongStatText GEQU 16
EditLine GEQU 17
Iconltem GEQU 18
Picltem GEQU 19
Userltem GEQU 20
UserCtlItem2 GEQU 21

Using StartData

PHK

PLB ;Data bank = program bank
_TLStartup ;Tool Locator

_MTStartup ;jMiscellaneous Tools

PHA ;space for result
_MMStartup ijMemory Manager

Poplord MyID

; Get direct page memory for the tool sets:

PHA ;Space for handle

PHA

PushLong #%D00 iThirteen pages

PushWord MyID ;1D tag to use

PushWord #$%C005 jLocked, fixed, aligned, fixed bank
PushLong #0 ;Bank $00

_MHewHandle

FPopLong DeReflLoc

LDA [DeReflLoc] ;Dereference the handle

STA DPAddress ; and save the pointer (low)
PushWord DPAddress ;DP to use (3 pages)
PushWord #VidMode iGraphics mode

PushWord #1860 imax width

PushWord MyID ;1D tag to use

_QDStartup sQuickDraw 1

_InitCursor iDisplay arrow cursor

Reference Section 89

LDA DPAddress

cLC

ADC #$300 ;one page

PHA

PushWerd #0 ;quede size (default)
PushWord #0 ;x min for clamp
PushWord #XMaxClamp ;x max for clamp
PushWord #0 3y min for clamp
Pushilord #200 3y max for clamp
PushWord MyID ;ID tag to use
_EMStartUp ;Event Manager

+ Now load the RAM-based tools:

GetTools PushPtr ToolTable

_LoadTools
BCC StartMore
cCMP #%$45 :Error was Volume Not Found?
BNE Abort :No, so branch
JSR AskForDisk ;Ask for beot wvolume
CMP 1 ;0K?
BEG GetTools :¥Yes, so branch
Abort PLA s (remove return address)
JMP DoShut

;Start up the rest of the tool sets:
StartMore ANOP
_GDAuxStartup ;QuickDraw Auxiliary Tools

PushWord MyID

LDA DPAddress

CLC

ADC #$400 ;jone page

PHA

_CtlStartup ;Control Manager

PushMord MylD
_WindStartup ;Window Manager

PushlLong #0
_RefreshDesktop :Draw the screen

90 Using the cs Tools

- e e wE e

PushWord MylID

LDA DPAddress

cLC

ADC #8500 ;one page

PHA

_MenuStartup ;Menu Manager

PushlWord MyID

LDA DPAddress

CLC

ADC #3600 jone page
PHA

_LEStartup sLineEdit

PushWerd MylD
_DialogStartup ;Dialog Manager

PushWord MylD

LDA DPAddress

cLC

ADC #3700 jone page

PHA

_SFStartup ;:Standard File Operations
LDA DPAddress

CLC

ADC #3800 jone page

PHA

_SoundStartup ;S5ound Manager

Insert this to start up the Print Manager:

PushWord MylD

LDA DPAddress

cLC

ADC #$300 ;two pages

PHA

_PMStartup ;Print Manager

PushWord MyID

LDA DPAddress

CLC

ADC #$B00 jone page

PHA

_FMStartup ;Font Manager

Reference Section

91

LDA DPAddress

CLC

ADC #$C00 jone page

PHA

_SANEStartup ;Numerics (SANE)
_ScrapStartup ;Scrap Manager
_IMStartup iInteger Math
_DeskStartup ;Desk Manager
RTS

AskForDisk ANOP
GET_BOOT_VOL GBVParms ;Get name of boot volume

PHA ;jspace for result
PushWord #150

PushWord #50

PushPtr Prompt1

PushPtr VolName

PushPtr DK_Msg

PushPtr Cancel _Msg

_TLMountVeolume
PLA
RTS
GBVParms DC I4'VolName!
Prompti STR '"Insert the volume:!
VolHame DS 18 iSpace for volume name
OK_Msg STR ‘oK
Cancel_Msg STR 'Abort!

DoShutDown EMNTRY

_DeskShutDown
_IMShutDown
_ScrapShutDown
_SANEShutDown
_FMShutDown
£ _PMShutDown ;Call this if using Print

_SoundShutDown
_SFShutDown
_DialogShutDown
_LEShutDown
_MenuShutDown

92 Using the c¢s Tools

Manager

DoShuti

StartData
My 1D

QuitParms

_WindShutDown
_CtlShutDown
_GDAuxShutDown

ENTRY

_EMShutDown
_QDShutDown

PushWord MyID

_MMShutDown
_MTShutDown
_TLShutDown

_Quit QuitParms
BRK $FO

END

DATA

DS 2

DC 140"

DC 120!

sEnter here if LoadTools fails

i (Shouldn't get this far)

:Return to caller
;No special flags

; Table of RAM-based tools to load. Only load the tools you
3 have in the SYSTEM/TOOLS/ directory.

ToolTable

-

DC
DC
DC
DC
Dc
DC

SRR

1'14,$0000"
1'15,$0100"
116,$0000°"
1117,80000"
1'18,$0000°"
1119,$0000!
1120,%$0000"
[121,$0000"
[122,$0000"
[123,$0000°
1124,$0000"
1125,$0000"
11'26,$0000"
1127,$0000"
1'28,$0000"

sNumber of tools to load
;Window Manager

;Menu

Manager

;Control Manager
;(System Loader always loaded)
;BuickDraw Aux Tools
;Print Manager

sLine

Edit

;Dialog Manager
;Scrap Manager
;Standard File Operations

;Disk
:Note
;Note
sFont
sList

Utilities
Synthesizer
Sequencer
Manager
Manager

Reference Section

93

Listing 3-2: A User-defined Tool Set

"l"'l"I-II‘IIICI-I"lliflilill—llllllll‘.ihlﬂﬂl‘lll
* This program shows what a custom tool set
* looks like. The first portion installs ®

* the tool set into the user tool set table. =
LSS S AR A SR R R R R Y S SEE |

KEEP TOOLSET
MCcarPy TOOLSET.MAC

TS_NUM GEQU $01 ;Toal set number
UserOrSys GEQU $8000 ;88000 = user tool set

Installer START

_TLStartup
_TextStartup

3 This code installs the user tool set:

PushWord #UserOrSys iTool set type
PushWord #TS_NUM ;Tool set number
PushPtr ToolSet s:Pointer to FPT
_SetTSPir ilnstall the tool set

j Now let's test the tool set by showing the day of the week:

PushPtr TheBuffer

LDX #TS_HNUM+9+256 ;iCall DayDfleek function

JSL s$E10008 ;$E10008 = user dispatcher
PushPtr TheBuffer

_WriteString iDisplay on text screen
_TextShutDown

_TLShutDown i(this removes user tool sets)

_QuIT QuitParms

BRK $FO

QuitParms DC [4vor
DC 210!

TheBuffer DS 10 ;Day name returned here
END

* The tool sei definition begins here:

ToolSet START

94 Using the ¢s Tools

+ This is the function pointer table. It contains the addresses,
+ minus 1, of each function subroutine. It begins with a long
» word containing the number of functions, plus 1.

DL 14" ({TBL_END-ToolSet) /4! :Mumber of functions (+1)
DC [4'TTBoatInit-1!

DC [4!'TTStartup-1"

DC 14'TTShutDown-1"

pc 14'TTVersion=-1"

Dc [4'"TTReset-1"

DC l4'"TTStatus-1"

DC l4"'Reserved-1"

5] 14'Reserved-1"

Dc l4'DayUfNEEE-1'

TBL_END ANDP

TTBootInit LDA #0 +Null error code
CLC sMo error
RTL

:TTStartup has one input parameter: a word representing a starting
address in bank $00 of a one-page work area. On entry to TTStartup,
this word is buried $07 bytes into the stack, just above the two
3-byte return addresses. On exit, this function removes the input
parameter from the stack by moving the two return addresses and the
stack pointer up by two bytes.

me e e o ww w

TTStartup ANOP

LDA $07,5 ;Get direcl page address
PushWord #UserOrSys ;Tool set type

PushWord #TS_NUM ;Tool set number

PushWord #0 iHigh word of address (zero)
PHA :Low word of address

_SetWAP

: Remove the input parameter from the stack:

LDA 5,8 ;Move the two long JSL

STA 7;5 s+ return address up by

LDa 3,5 ; lwo bytes

STA 5.5

LDA 1.5

STA 35

TSC ;Increment the SP by

CLC ; two bytes.

aDbC #2 ;(Could just do PLA instead)
TCS

Reference Section 95

LDA #0 sExit wilh no error
CLC
RTL

3To shutdown this tlool setl, just zero the enitry in the
3 work area pointer table. It is up te the application to
5

dispose of the area it points to (using DisposeHandle).

TTShutDown ANOP

PushMWord #UserOrSys ;Tool set type
PushWord #TS_HUM ;Tool set number
FushLong #0 ;Address 1s zero
_SetWAP

LDA #0

CLC

RTL

TTVersion returns a version word in a space on the
stack allocated by the caller. The high-order byte
contains the main version number and the low-order
byte contains the secondary version number. The
stack result space begins at an offset of $07 from
SP because there are two 3-byte return address on
the top of the stack on entry to TTVersion.

mE wE wE wE wE e

TTVersion ANOP

LDA #$0201 ;Version 2.1
STA $07,5 jPut result in stack space
LDA #0
cLC
RTL
TTReset LDA #0
CcLC
RTL

TTStatus returns a Boolean (word) in the stack space

; reserved by the caller. The result is true 1f TTStartup
: has been called; false otherwise. TTStatus knows if it

; has been called because the WAPT entry will be nonzero.

TTStatus ANOP

CMP #0 i1s WAP (low) zero?
BEQ SetStatus ;Yes, so store false
LDA #SFFFF 3;True code

96 Using the cs Tools

SetStatus STA $07,5 sPut resultl in stack space

LDA #0
cLC
RTL

Reserved LDA #TS_NUM+256+$FF ;Error $FF means "not implemented
SEC
RTL

The DayOfWeek function expecls one parameter on the stack: a
pointer to a data ares where the function is te return the
day-of-week string. Hote that after the initial PHD and
aligning the new direcl page with the stack, the pointer

is at [($09].

DayOfleek ANOP

- & W® = »

01dDP EGQU $01
RTLAY EQU 01dDP+2
RTL2 EQu RTL1+3
ThePtr Eau RTL2+3
PHD ;Save current direct page
TSC sAlign d.p. with stack
TCD
FHA ;Space for 8 bytes of result
PHA
PHA
PHA
_ReadTimeHex
PLA ;Pop minute/second
PLA ;Pop year/hour
PLA ;Pop month/day
PLA ;Pop day of week (high byte)
XBA ;Put day of week in low byte
AND #50F 3Strip unused bits
DEC A :Convert 1..7 to 0..6 (1=Sunday)
CMP #7 sNumber in range (0..86)7
BCS DOW_Errar +No, so branch

: Look for the Nth entry in the table:

TAY
LDX #0

FindEntry CPY #0 ;At correct name?
BEQ SaveResult 1Yes, so branch

Reference Section 97

FE1 LDA
BEG
INX
BRA

FE2 INK
INX
DEY
BRA

>DayTable, X
FEZ2

FE1

F;ndEnLry

i(Force long because B<>K)
iBranch 1f at end of name
iMove to next character

iMove to start of next name

;Decrement day-of-week counter

; Transfer the name to the buffer area:

SaveResult SEP
LONGA

LDY
SR1 LDA
BEG
STA
INX
INY
BRA

SR2 DEY
TYA
STA

REP
LONGA

LDA
BRA

DOW_Error LDA
DOW_Exit TAX

PLD

#5520
OFF

#1
>DayTable, X

SR2
[ThePtrl,Y

SR1

[ThePtr]

#$20
OM

#0
DOW_Exit

#TS_NUM=256+501

iUse B-bit accumulator

iBranch if at end of name

iStore length of string

;Back to 16-bit accumulator

iNo errar

sError code #1
;Save error code in ¥

iRestore direct page

3 Remove the long input parameter from the stack:

LDA
STA
LDA
STA
LDA
STA

TSC
CLC
ADC
TCS

98 Using the cs Tools

#4

iMove the two long JSL
;7 return address up by
i four bytes

iyIncrement the SP by
i four bytes,

THA 1Get error code

CHP 1 :Set carry if error
RTL
MSB OFF

DayTable DC C'Sunday',l2'0'
DC C'Monday',12'0"
DC C'Tuesday',12'0'
1] C'Nednesday',IE'U'
DC C'Thursday',12'0"
Dc C'Friday*,12'0!
DC C'Saturday',lE'ﬂ'
END

Reference Section 99

CHAPTER 4

Memory
Management

As discussed in chapter 2, the 65816 microprocessor that controls the Gs can access
directly an enormous 16-megabyte memory space (arranged as 256 memory banks
of 64K each); the 24-bit memory addresses run from $000000 to SFFFFFF. This
space can be made up of any combination of ROM, RAM, and memory-mapped I/O
(soft switch) locations, but it need not be fully populated. In a computer system,
the ROM holds a bare-bones operating-system program (sometimes called a system
monitor) which loads a more elaborate operating system from disk when the system
is turned on. It also usually contains a collection of subroutines that an application
program can call to perform standard tasks, such as clearing the screen, reading the
keyboard, and printing a character. RAM, of course, is where an application stored
on disk is loaded and where data of any sort can be stored by an application or the
operating system.

This chapter investigates the special uses the Gs makes of the memory in the
65816's address space. Some clues concerning the operation of the ¢s will be
uncovered, and you will discover which areas of RAM are available for use by your
own applications.

When writing an application for the s (or any computer for that matter), it is
important to avoid using memory areas already in use by the operating system or
by any other application. If you overwrite busy memory areas, the system is sure
to behave unpredictably.

It is easy to write a program for the Ile that does not conflict with the original
ProDOS 8 operating system. ProDOS 8 occupies specific memory areas and pro-
grammers are responsible enough not to use those areas for applications. Trying to
live with another application in memory, such as a desk accessory utility, can be
fatal, however. Why? Because no software protocol for informing an application of
the memory other applications are occupying has been implemented. A co-resident
desk accessory utility, such as the Pinpoint Desk Accessories, is useful only because
it occupies an area few applications use (the auxiliary bank-switched RAM area).

101

A program can avoid memory conflicts in a ProDOS 16 ¢s environment simply
by using a tool set called the Memory Manager. When the program needs a block
of memory to work with, it simply issues a request to the Memory Manager. The
Memory Manager processes the request by locating a free area of memory of the
proper size, marking it as in use, and returning its handle (the address of a pointer
to it). As long as every program uses the Memory Manager, no program will tread
on the toes of any other program.

The use of the Memory Manager is discussed at the end of this chapter.

cs MEMORY MAP

As shown in figure 4-1, the Gs can address up to 256 banks of memory. The banks
are numbered from $00 to $FF, and each one is 64K in size. In its minimal
configuration (no card in the memory expansion slot), the s has 256K of RAM and
128K of ROM, so it uses only six of these banks: banks $00, $01, SEO, SE1, $FE,
and $FF. The first four of these banks hold the RAM, and banks $FE and $FF hold
the ROM. The rest of the banks are unoccupied or unavailable.

The RAM in banks $E0 and $E1 deserves special mention because it has one
restrictive characteristic that the RAM in other banks does not: read and write
operations affecting these banks always take place at the normal (1 MHz) clock
speed, even if the system speed is set to fast (2.8 MHz).

If you are operating in fast mode and you start using either of these banks, the
Gs hardware slows the system down and automatically returns to fast mode when
you are done. The reason for the slowdown is that banks $E0 and $E1 contain video
display buffers and other memory-mapped 1/0 locations that, for reasons of com-
patibility with existing Ile software and hardware, must be accessed at the same
clock speed used by the 1le (1 MHz).

You can add more RAM to the Gs by inserting an appropriate card in the memory
expansion slot (see appendix 6). Additional RAM occupies consecutive banks begin-
ning at bank $02—if you add one megabyte of memory (sixteen 64K banks), for
example, it will occupy banks 802 through $11. The upper limit for RAM expansion
through the memory expansion slot is 8 megabytes.

A memory expansion card may also contain ROM. The ROM may occupy any of
the banks from $F0 to 8FD. The data in banks $F0 to $F7 (a 512K space) is expected
to be organized just as it would be on a disk; that is, these ROM banks are configured
as a ROM Disk. The ROM in banks $F58 to $FD is designed to hold extensions to
the firmware ROM.

SPECIAL RAM AREAS

Several areas in the four core RAM banks (300, $01, $3E0, and $E1) are used for
special purposes, by the 63816, the operating system, the firmware, or /O devices.
Programs must respect this usage and not attempt to use these areas for other
purposes, except where the context permits.

102 Memory Management

The Apple 1lcs Memory Map (Each RAM bank is 64K in size.)

Figure 4-1.
bank — $00 $01 $02 ... $7F $EO $E1
Main/Auxiliary Expansion System, 1/0,
RAM for lle/llc RAM and Video
Applications (to 8 megabytes) RAM
(128K) (128K)
l . J
bank — $FO ... $F7 $F8 ... $FD $FE $FF
ROM Disk System ROM System
Memory Expansion ROM
(512K) (384K) (128K)

Special RAM Areas

Banks $EO0 and $E1

The two RAM banks in the high end of memory, banks $E0 and $E1, are often
referred to as the firmware RAM because the ROM drivers for peripheral devices,
such as the serial ports, the mouse, and the disk, use these banks for data storage.
The System Loader (the portion of the operating system that loads ProDOS 16
applications), AppleTalk, and tool sets also make extensive use of the firmware
RAM. As mentioned earlier, reads and writes to banks $EO/SE1 always take place
at 1 MHz, even if the system clock speed is set to 2.8 MHz.

The arrangement and use of memory in firmware RAM on the s is, in many
respects, the same as on the Ile. Bank $E0 looks much like main memory on the
Ile and bank SE1 looks much like auxiliary memory. The similarities are reviewed
below.

Language Card. The space from $D000 to $FFFF (12K in size) in either of the
two banks of firmware RAM is called a language card (or bank-switched RAM) and
can be associated with either 12K of ROM or 16K of RAM. A program can switch
between ROM and RAM on the fly by manipulating a set of software-controllable
switches (called soft switches).

The ROM for the language card is actually physically located in bank $FF (at the
same relative position within the bank), but this area also maps to banks $E0 and
$E1 when the ¢s is turned on. The ROM contains Applesoft, the system monitor,
I/O drivers, tool sets, and more.

The RAM for the language card actually takes up 4K more space than what is
available! The extra 4K is treated as a second $D000-$DFFF memory segment and
soft switches are available to select which of these two banks is to be active. On the
Gs, the language card RAM in banks $EO/SE] is reserved for use by the ProDOS
System Loader and by AppleTalk.

I/0 Space. The 1/O space runs from $C000 to $CFFF. The first part of it, from
$C000 to $SCOFF, is actually made up of memoryv-mapped I/O locations—that is,
locations that can be read from or written to so that yvou can communicate with /O
devices. Each slot (or built-in port) has the exclusive use of sixteen unique /O
locations: $C090-$CO9F for slot 1, SCOA0-SCOAF for slot 2, and so on up to $COFO0-
$COFF for slot 7. The /O locations from $C000 to $3CO7F control internal 1/O
devices (such as the keyboard and the video) and modes of operation (including
memory selection, system speed, and graphics mode selection).

Peripheral ROM. The locations from $Cn00-$CnFF (n=1 to 7) are reserved for
ROM found on a peripheral card plugged into slot n. (Internal ports have ROM
associated with them, too. It is stored in the lower part of bank $FF but is also
mapped to the $Cnxx pages in banks $E0 and $E1.) A typical ROM contains a
program that provides the subroutines a program needs to communicate easily with

104 Memory Management

a peripheral device. Each peripheral may also contain a 2K ROM area that occupies
$C800-SCFFF; the peripheral can select this ROM area to the exclusion of all
others.

While a program is running in the peripheral ROM area, the Gs always operates
at normal speed (1 MHz). This is done to permit timing-sensitive peripherals
designed for the lle to work properly on the cs. For example, an internal modem
card like the Hayes Micromodem will not work at a clock speed other than 1 MHz
because the program in its ROM that dials the telephone uses precise timing loops
that are based on a 1 MHz clock speed.

Video Buffers. The video buffers for the standard Ile video display modes—40-
and 80-column text, single- and double-width low-resolution and high-resolution
graphics—are located in the same relative positions on the Gs as on the Ile:

$400-$7FF are used for the page 1 40-column text display and low-resolution
graphics modes

$800-$BFF are used for the page 2 40-column text display and low-resolution
graphics modes

$2000-$3FFF are used for the page 1 high-resolution graphics mode
$4000-$5FFF are used for the page 2 high-resolution graphics mode

In each case, the standard text and graphies modes (40-column text and single-width
graphics) use areas in bank SE0 only. For 80-column text and double-width graphics
modes, the same areas in bank $E1 are also used.

Other Special Areas. Another display mode, called super high-resolution graphics,
has a video buffer located from $2000 to $9FFF in bank SE1 only. This is the display
buffer used by the QuickDraw II graphic drawing tool set that is stored in the Gs
ROM. It does not exist on the Ile.

The other areas in banks $EO and $SEI that have special significance are the
spaces from $0000 to $1FFF in both banks (which include the video buffers from
$400 to $SBFF that were discussed). These spaces are reserved by the operating
system for the storage of variables, vectors, jump tables, and other data used by the
Gs tools and built-in /O ports.

Free Areas. The areas in banks $E0/$SE1 not used for special purposes are:

» $6000-$BFFF in bank $E0
* $A000-3BFFF in bank $E1

Special RAM Areas 105

These areas are free for allocation by the Memory Manager. Keep in mind that, for
all practical purposes, the video buffers used by page 1 and page 2 of standard high-
resolution graphics ($2000-$5FFF in bank $E0) are also available if a program uses
only the super high-resolution graphics mode.

Banks $00 and %01

Bank $00 is of particular importance, because this is where the 65816 locates its
stack and direct page. In emulation mode, the stack occupies page $01 and the
direct page occupies page $00. In native mode, however, the operating system can
position the stack and direct page anywhere in bank $00.

One of the primary design constraints for the ¢s was that it work properly with
existing Ile software (and hardware). To allow this, it was necessary to permit the
remapping of banks $00 and $01 so that these areas could be used as the main and
auxiliary memory areas are on the Ile, complete with an 1/O space and a language
card area. At the same time, I/O and video operations had to take place at the same
clock speed as the Ile, namely 1 MHz.

One way to accomplish this might have been to force banks $00 and $01 to
operate at 1 MHz all the time and to keep the standard video buffers and memory-
mapped 1/O locations in those banks. This would mean, however, that one especially
common 65816 operation—pushing data on the stack (a bank $00 operation)—would
always cause the system to slow down, severely restricting the advantage of operating
the Gs in 65816 native mode at 2.8 MHz.

The ultimate solution was not to restrict the speed of bank $00 and $01 operations
to 1 MHz. Rather, the system was designed to detect automatically a write operation
to a video buffer or the /O space (at a speed of 2.8 MHz or 1 MHz) and to generate
4 concurrent write operation (always at 1 MHz) to the same location in bank SE0
(for bank $00 writes) or bank SE1 (for bank $01 writes). This technique is called
shadowing. Reading from a shadowed video buffer does not cause the system to
slow down because neither bank $E0 nor bank $E1 is accessed.

The areas in banks $00 and $01 that may be shadowed are shown in figure 4-2.
The Gs has a shadow register that controls which video buffers are actually shadowed
at any given time (see figure 4-3). A bit in the shadow register also controls the
shadowing of 1/0 locations and language card operation.

Notice that the page 2 text and low-resolution graphics screen cannot be shadowed
using hardware techniques, but it is rarely used anyway. (A software technique
wherein data in bank $00/$01 is transferred to bank SE0/$E1 in response to a periodic
interrupt can be implemented to emulate hardware shadowing. Invoke this by
setting Alternate Display Mode On from the desk accessory mentu.)

If shadowing is inhibited, a program must directly access the video buffers or I/O
locations in bank $E0 or $EI. Enabling /0 shadowing also creates a language card

106 Memory Management

Figure 4-2. The Shadowed Memory Areas on the Apple 1lcs

$0000
scooo WL 1/0 spece L] 170 space
$A000 =
cooooy Super-High Resolution
ooy (includes $2000-$5FFF
ol a3 well)
$6000
High-Res page 2 High-Res page 2x
$4000
High-Res page | High-Res page 1x
$2000F
;233 7z Text page | Text page 1x
Bank $00 Bank $01
(The shaded areas shadow {The shaded areas shadow
to bank $E0.) to bank $E1.)

noTE: Text page 2 ($800-$BFF) is shadowed using software techniques if Alternate Display Mode is On.

at $D000-SFFFF in banks $00/$01 that works just as the one in the Ile does (see
the description above for banks SE0/SEL). This, in turn, enables access to the
Applesoft and system monitor ROMs.

In normal Apple lle emulation mode, all video areas are shadowed so that all
existing software will work properly. When the ¢s’s new super high-resolution
graphics mode is used, shadowing of other graphics modes is disabled so that the
shadowed space in banks SEO can be freed.

Special RAM Areas 107

Figure 4-3. The Shadow Register

7|16|5|4 (3|21]0 $EOCO35

Text pages 1,1x
($400-37FF)

High-res Graphics, page |
($2000-$3FFF bank $00)

High-res Graphics, page 2
($4000-$5FFF bank $00)

Super High-res Graphics
($2000-$9FFF bank $01)

Auxiliary High-Res
graphics pages

Languege Card operation +
170 shadowing ($CO00-$CFFF)

1 = inhibit shadowing, 0 = enable shadowing

NOTE: Bit 4 works in conjunction with bits 1 and 2. If bit 1 is clear, the space from $2000-$3FFF in
bank $00 is shadowed to bank SEO; if hit 4 is also clear, the same space in bank $01 is also shadowed (to
bank SE1). Similarly, if bit 2 is clear, clearing bit 4 enables shadowing from $4000-85FFF in bank %01
(to bank $E1) as well as the same locations in bank $00 {to bank SE0).

In normal operation, the Gs always enables shadowing of the text pages, even if the
text screen is not used. This is necessary so that lle-style peripheral cards (which
write to unused areas of the text display buffer) will work properly. Also, /O
shadowing is enabled so that interrupts (which vector through ROM in bank $00)
can be handled.

EXPANSION RAM

Banks $02 through $DF (14 megabytes less 128K) are all reserved for future RAM
expansion, although Apple has imposed a practical limit of 8 megabytes by not
providing decoding circuitry beyond the 8-megabyte limit. Any expansion RAM vou
add is available for allocation with the Memory Manager.

108 Memory Management

Figure 4-4. The CYA ("Configure Your Apple”) Register

716|514 |3(2]|11]0 $EOCO36

+ - " 4

1!
T— disk motor-on detect

for slots 7,6,5, 4

—
i

permit shadowing in
all expansion RAM
banks

no such shadowing

o
n

fast speed (2.8 MHz)
normal speed (1 MHz)

n

<
1]

Video and 1/0 shadowing can be permitted for all of these banks as a group (but
not individually) by setting a bit in the CYA register (see figure 4—4). Even-num-
bered banks shadow to page $E0 and odd-numbered banks to page $E1. However,
vou should never shadow expansion RAM if your are running Gs-style applications
because they will not run properly. The problems begin when the Memory Manager
allocates space somewhere in the language card area of a bank, an area where ROM
is usually enabled (just as it is in banks $00/301). When a tool or a program tries to
write to the allocated space, nothing is saved!

Refer to appendix 6 for descriptions of several memory expansion cards available
for the Gs.

THE ROM BANKS

The 128K ROM in banks $FE and $FF contains the ROM versions of many of the
¢s tool sets and desk accessory support code. It also contains, from $8000 to $FFFF
in bank $FF, a system monitor comparable to that found on the Ile, the Applesoft
BASIC programming language, and subroutines to support the built-in peripheral
devices on the Gs. By using clever hardware remapping techniques, the upper 12K
of bank $FF can be used as if it occupied the same portion of bank $E0, $EL, or
any other bank for which 1/O shadowing is enabled.

The ROM Banks 109

The fourteen banks from $F0 to $FD are reserved for future ROM expansion.
Banks $F0 through $F7 (512K) are to be used as a ROM disk and banks $F8 through
$FD (384K) are for additional irmware ROM.

THE MEMORY MANAGER

The Memory Manager is tool set #2. The main chore it performs is allocating areas
of memory in such a way that previously allocated areas are not disturbed. Its other
major chore is releasing allocated areas of memory to the general pool of available
memory.

The Memory Manager manages all of RAM memory except the following areas:

* $CO00-$FFFF in banks $00, $01, $E0. $E1
= 30000-507FF in banks $00, 301
* $0000-51FFF in banks $E0, $E1

These unmanaged areas are reserved for use by the operating system.

Areas of memory allocated by the Memory Manager are called blocks, Each block
is identified by a four-byte address, called a handle, which is returned by the
function performing the allocation. It is important to realize, however, that the
handle is not the address of the block itself—instead, it is the address of a 20-byte
block record. The first entry in this record is a pointer to the block (called a master
pointer); it is the master pointer that contains the address of the block. See figure
4-5 for a pictorial representation of the relationship between a handle, a block
record, a master pointer, and the block itself.

The advantage of using a handle instead of a pointer to identify a block is that a
handle to a block remains valid even if the block is repositioned by the Memory
Manager—only the address stored in the master pointer changes. If a pointer was
returned instead, and the block was moved, a program would not be able to
determine the address to which the block was moved.

The Memory Manager moves blocks around when it needs to perform a block-
compaction operation. This occurs in only two situations: when you specifically
request it (with CompactMem), or when you try to allocate a block {with New-
Handle, ReallocHandle, or RestoreHandle) and there is no free area large enough
to hold it. Block compaction gathers together allocated blocks which may be scat-
tered throughout memory. This is done to eliminate gaps between blocks and to
create as large a continuous free space as possible. Scattering occurs as blocks are
allocated and deallocated during program execution.

If you are trying to allocate a block and there is no room for it even after
compaction, the Memory Manager automatically frees purge-level-3 blocks (the
Purge Level attribute is discussed below) and the blocks are compacted again. If

110 Memory Management

Figure 4-5. Block Allocation with the Memory Manager

Master Pointer—

attributes
owner ID
size of block
previous ptr
Handle next ptr

20-byte
record

memory
space

there still is not enough room, purge-level-2 blocks and then purge-level-1 blocks
are freed; further compactions occur until there is room. An out-of-memory error
is reported if there is no room even after all three levels of purgeable blocks have
been purged.

You can tell the Memory Manager to free (or dispose of) previously allocated
blocks by using the DisposeHandle function. It is good programming practice to
dispose of blocks as soon as they are no longer needed so that as much space as
possible is always available.

Attributes

When you make a block allocation request (with NewHandle or ReallocHandle),
you must tell the Memory Manager the attributes of the block. These attributes
indicate where the block is to be allocated and how it is to be dealt with after
allocation.

The Memory Manager 111

Figure 4=6. The Attribute Word for a Block

[isliafizfiz[11]io] 98 [7]e[s[4[3]2]1]0]

1 - R G -
I—i = fixed bank

| = fixed-address

resgrved] reerved
(must be 0)

—
n

page aligned

—
]

special memory
not usable

| = bank-boundary
limited

purge level (O to 3)

1 =fixed

1 = locked

The attributes are passed in a word; the bits in this word have the meanings shown
in figure 4-6. Note that except for the Locked and Purge Level attributes, none of
the attributes can be changed with function calls after the block has been allocated.

Locked. A locked block is one the Memory Manager is not permitted to move,
even if the Fixed and Fixed Address attribute bits are off. In addition, a locked
block cannot be purged even if its Purge Level is non-zero.

The Locked attribute can be changed after a block is allocated by calling HLock
(to turn it on) or HUnLock (to turn it off). You should lock a block only when
necessary, such as when you need to access the data it contains (see below), and
then unlock it as soon as vou can. Because locked blocks cannot be moved, they
can prevent efficient block compaction operations and can lead to premature out-
of-memory errors.

Fixred. Like a locked block, a fixed block may not be moved by the Memory
Manager during a memory compaction operation; it stays put. The main difference

112 Memory Management

between a fixed block and a locked block is that a fixed block can be purged if its
Purge Level is non-zero. In addition, the setting of the Fixed attribute cannot be
changed with a function call.

Purge Level. Purging a block means releasing a block by setting its master pointer
to 0 (the space far the block record containing the master pointer is maintained and
can be reused by calling ReallocHandle or RestoreHandle). The purged block returns
to the pool of free memory that is available for future allocation by the Memory
Manager, but the handle itself remains allocated and can be reused.

The Purge Level of a block can be 0, 1, 2, or 3, numbers that reflect the purge
priority: blocks with higher purge levels are purged before blocks with lower purge
levels. A Purge Level of 0 means that the block cannot be purged at all. The Purge
Level of a block can be changed after allocation with the SetPurge function.

Purge level 3 is reserved for use by the Gs System Loader, the tool set responsible
for dealing with ProDOS 16 load files (which usually contain programs). When the
System Loader loads a program, it first puts the previous program into a dormant
(or “zombie”) state by assigning a purge level of 3 to the memory blocks it uses. If
any of these blocks are purged, they are all purged; if no purging takes place and
control returns to the program, however, the System Loader does not reload the
program from disk, it just sets the purge level of the block to zero and executes the
program.

You can purge purgeable, unlocked memory blocks explicitly using PurgeHandle.
Purging also occurs automatically if you call NewHandle, ReallocHandle, or
RestoreHandle and there is not enough space for the new block even after the
blocks are compacted. In this situation, purgeable blocks are purged, in priority
order, until there is enough space.

Bank-Boundary Limited. If a block is Bank-Boundary Limited, it will be allocated
in a single bank. Blocks that contain program code must have this attribute set,
because 65816 programs cannot cross bank boundaries. (When the program counter
goes from $FFFF to $0000 at a bank boundary, the carry generated is ignored and
is not added to the program bank register. That means execution continues at the
bottom of the current bank, not at the bottom of the next bank, as might be
expected.}

Ordinary data blocks may span banks, however, because the 65816 indexed
addressing modes let vou index properly from one bank to the next.

Special Memory Not Usable. If this attribute is set, the block may not be allocated
in bank $00 or 801, or in any of the graphies video buffer areas in banks $E0 or SE1
($2000-$5FFF in $E0 and $2000-39FFF in bank $E1). You would set this attribute
if vou were reserving memory from a Ile-style application so as to avoid allocating
areas in the 128K program space.

The Memory Manager 113

Page-Aligned. If the block is Page-Aligned, it begins at an address of the form
$bbxx00, that is, at the beginning of a memory page. (A memory page is the 256
bytes extending from address $bbxx00 to $bhxxFF.) You should set this attribute
when allocating space to be used as a 65816 direct page so as to maximize the speed
of direct page operations. A direct page operation still works if the page is not
aligned, but it takes one cycle longer to execute than if it is aligned.

Fixed Address. Set this attribute if you want a block to be allocated at a specific
location in memory. You might want to do this, for instance, to align a block with
one of the graphics screen video buffers. The Gs operating system uses this attribute
when it reserves specific memory areas at start-up time.

Fixed Bank. If the Fixed Bank attribute is on, the Memory Manager will al-
locate a block in the bank specified when you call NewHandle, ReallocHandle, or
RestoreHandle. You must set this attribute when allocating direct page and stack
space, because the 65816's direct page and stack must be in bank $00.

Accessing a Block

To read data from or write data to a block, vou need to know the address of the
block. To get it, you must first dereference the handle to the block to determine
what the master pointer is. Then, you can address the block by storing the master
pointer in direct page and using the [dp],Y indirect addressing mode. (Recall from
chapter 2 that the brackets indicate that this is a long addressing mode, not a short
addressing mode; the pointer to the start of the block is stored at dp, dp+1, and
dp+2, where dp is a direct page address.)

In the example to follow, a 256-byte block, whose handle is stored at MyHandle,
is filled with zeroes. The first part of the subroutine dereferences the handle
(DPScratch and ToBlock are the direct page addresses of two four-byte areas.):

s 16-bit A register

LDA MyHandle ;Put handle in direct page
STA DPScratch i so that the master pointer
LDA MyHandle+2 i can be accessed with an
STA DPScratch+2 i indirect long addr mode.
LDA [DPScratch] ;Get master pointer (low)
STA ToBlock

LDY #2

LDA [DPScratchl,Y ;Get master pointer (high)

STA ToBlock+2

LDY #0
LDA #0

114 Memory Management

ClearBlk STA [ToBlockl,Y +Store a zero

INY

INY

CPY #256

BNE ClearBlk sBranch until Y=256
RTS

An important caveat: You cannot use a dereferenced handle to access a block if the
block may have been moved (because of compaction) or purged by the Memory
Manager since the time you did the dereferencing—it may not point to the block
anymore. Compaction and purging can occur ‘if you call the Memory Manager
directly, if you call a tool set function that calls the Memory Manager, or even if an
interrupt occurs (the interrupt handler could call the Memory Manager).

To prevent the movement or purging of a block—and to maintain the validity of
a dereferenced handle—lock the block in place with the HLock function just before
you dereference. If you do this, be sure to unlock the block (with HUnLock) when
you are through using the dereferenced handle. The alternative is to avoid calling
tool set functions which may use the Memory Manager and to disable interrupts,
restrictions which are usually impractical.

If you choose not to lock the block, you should dereference the handle to the
block every time you want to access the block’s data, but even this may not work if
interrupts are occurring.

Of course, you do not have to worry about locking a block (or unlocking it) if you
set the Fixed or Fixed Address attribute when the block was first allocated (and the
block is not purgeable) or if you set the Locked attribute.

MEMORY MANAGER FUNCTIONS

There are many memory manager functions at your disposal, but most applications
will use only a core group of six major functions. This chapter looks at this core
group and then reviews most of the minor functions. (See table R4-1 at the end of
this chapter for a summary of the major memory manager functions.)

The Major Functions

Start-up and Shut-Down. Like all tool sets, the Memory Manager has a start-up
function, MMStartup, that your application must call before it can use the Memory
Manager. Because almost every other tool set implicitly uses the Memory Manager,
you must call MMStartup before calling the startup function of any other tool set
except the Tool Locator and the Miscellaneous Tool Set.

MMStartup takes no input parameters, but it does return a result—an Owner
ID tag. The ID tag is an identification code assigned to the program when the
System Loader loads it into memory prior to execution. It is to be used to mark all

Memory Manager Functions 115

blocks allocated by the application. It also identifies the blocks to be included in
certain group operations the Memory Manager can perform.
Here is how to call MMStartup:

PHA iSpace for result (word)
_MMStartup

PLA

STA MylD ;Save ID code

MyID is a two-byte data area that can be allocated with a data allocation directive
of the form:

My 1D ps 2 jAllocate two bytes

You should save MyID, because you will need it to start up other tool sets.

MMShutDown is the shut-down function for the Memory Manager. Call it just
before the application ends, after shutting down all other tool sets (except the Tool
Locator and the Miscellaneous Tool Set). MMShutDown has one input parameter
(the ID tag returned by MMStartup) and returns no results:

Pushlord MylID
_MMShutDown

Note that MMShutDown does not free up all memory blocks associated with MyID.
This is done by ProDOS 16 when it regains control after a ProDOS 16 QUIT
command. You can explicitly free up memory blocks with the DisposeHandle fune-
tion (see helow).

Block Allocation. NewHandle is the primary block allocation function. With it
you can create blocks of any size, with any attributes, and you can associate them
with any 1D tag. NewHandle returns a handle to the allocated block.

The general calling sequence looks like this:

PHA ;Space for result (long)
PHA

PushLong BlockSize ;5ize of block

PushWord OwnerlD ;O0wner 1D tag

PushWord Attributes sAttributes of block
PushLong Location ;Address of block
_MewHandle

PopLong MyHandle ;Pop handle to block

(Recall from chapters 2 and 3 that PushWord, PushLong, and PopLong are macros,
not 65816 instructions.)

BlockSize is the size of the block to be created, in bytes. OwnerlID is the ID
code to be assigned to the block and is normally the same as the ID code returned

116 Memory Management

by MMStartup. Attributes is the attribute word for the block. Location is the starting
address of the block and is meaningful only if the Fixed Address or Fixed Bank
attribute is set.

NewHandle does all it can to reserve the requested space, including block
compaction and purging, if necessary. The handle that is returned points to a block
record made up of the following elements:

* Address of block (4 bytes)

» Block attributes (2 bytes)

e Owner 1D tag (2 bytes)

= Size of block (4 bytes)

» Address of previous block record (4 bytes)

» Address of next block record (4 bytes)

If the record is the first or last one in the list maintained by the Memory Manager,
the pointer to the previous block record or to the next block record is zero.

Notice that in the previous example, BlockSize, Attributes, and Location are
passed as variables (numbers stored in memory locations), even though you are
probably more likely to pass them as constants (immediate values). To pass constants,
precede the constant with “#” to inform the PushLong or PushWord macro that it
is a constant. For instance, to allocate five pages of memory in bank $00 for possible
use as direct pages by other tools, call NewHandle like this:

PHA ;Space for result (long}

PHA

FushLong #3500 iFive pages ($500 bytes)

PushWord MylID ;1D returned by MMStartup

PushWord #3$C005 jLocked, Fixed, Fixed Bank, Aligned
PushLong #0 ;Address: bank $00

_NewHandle

Poplong MyHandle ;Pop handle to block

Notice the attribute word for this block: $C005. Because a direct page must be in
bank $00, the Fixed Bank attribute (bit 0) is set. Because 63816 direct page instruc-
tions work more quickly when direct page begins on a page boundary, the Page
Aligned attribute (bit 2} is also set. The Locked attribute (bit 15) is set so that the
block will not move around—this means that you will have to dereference its handle
only once to access it. Finally, the Fixed attribute (bit 14) is set so that the block
will not move even if it is accidentally unlocked.

Memory Manager Functions 117

Block Deallocation. As soon as you are finished with a previously allocated block
of memory, you should free it up again to eliminate the possibility of an early out-
of-memory error, To do this you can use the DisposeHandle function:

PushLong MyHandle :Handle to block
_DisposeHandle

DisposeHandle also removes the entry for the master pointer in the Memory
Manager’s list of master pointers. This means that you cannot reuse the handle with
ReallocHandle or RestoreHandle.

DisposeHandle does its duties even if the block is locked or not purgeable.

Locking and Unlocking Blocks. As mentioned earlier, it is important to lock a
moveable or purgeable block to ensure its dereferenced handle remains valid for
data accesses. The function for doing this is HLock:

FPushLong I“IyHandle sHandle to bleck
_HLock

The function for unlocking a block is _HUnLock. It also takes a handle to the block
as its only parameter.

The Minor Functions

Most applications will not need to use the remaining Memory Manager functions
very often—they are used primarily by the operating system. Nevertheless, it is
important to become familiar with them so that you will recognize how to handle
those situations calling for their use.

Reallocation of Purged Blocks. 1f a block has been purged, its master pointer is
set to 0, but the space occupied by the master pointer is not freed. To reuse the
master pointer of a purged block, call ReallocHandle. It behaves just as NewHandle
does except that it requires one additional parameter, the handle to the purged
block. This is the last parameter passed; the other parameters are pushed first in
the same order as for NewHandle. You may find it simpler to use RestoreHandle.
It needs only the handle; the file attributes, owner, and size previously used are
retained.

When allocating space for a purged block, vou should resist the temptation to
use NewHandle. If vou do not reuse purged handles, you will waste memory (20
bytes per handle, the size of the block record) and Memory Manager operations
will be a bit slower.

Disposing and Purging Blocks. We saw earlier that DisposeHandle frees only the
block associated with a particular handle. With DisposeAll, vou can free up a group

118 Memory Management

of blocks at once, each associated with the same 1D tag. To use DisposeAll, pass
the ID tag as a parameter:

PushWord OwnerlD ;1D tag
_DisposeAll

This example disposes of all blocks associated with OwnerID. Do not try to dispose
of all blocks marked with the ID of the program itself, because the memory the
program occupies could be overwritten before the program ends.

Another way to free up space is to purge a block or group of blocks with
PurgeHandle or PurgeAll. Both functions will purge any unlocked block, even if
the block’s purge level is 0. The input parameter for PurgeHandle is a handle to
the block to be purged. The parameter for PurgeAll is an ID tag—all blocks with
the specified ID are purged.

Setting Attributes. Onlyv the Locked and Purge Level attributes of a block can be
modified after the block has been allocated. HLock and HUnLock, which lock and
unlock individual blocks, have already been discussed. Two other functions,
HLockAll and HUnLockAll, lock and unlock a group of blocks with the same 1D
tag. Pass the 1D tag on the stack before calling either of these functions.

To set the purge level of a block, use SetPurge. It takes two parameters: the new
purge level (a word from 0 to 3) and a handle to the block:

PushWord #1 ;Purge Level =1
FushLong MyHandle jHandle to block
_SetPurge

SetPurgeAll sets the purge level of every block with a given ID tag. The two
parameters it requires are the new purge level and the ID tag.

Block Information Functions. FindHandle takes a memory location as an input
parameter and returns a handle to the block in which it is located. For instance, a
program can deduce the handle to the block in which it is currently running by
executing the following segment of code:

PHA ;Space for result (handle)

PHA

PushPtir HMylLabel ;Push long address
MyLabel _FindHandle

PopLong CodeHndl iPop the result (handle)

GetHandleSize takes a handle as an input parameter and returns the size of the
block to which it refers. To get the size of the code segment in the above example,
use the following code:

Memory Manager Functions 119

PHA ;Space for result (long)

PHA

PushLong CodeHndl i1Handle to code block
_GetHandleSize

PopLong Size ;Pop the result (long)

Use SetHandleSize to expand or contract the size of an existing block. The input
parameters are a handle to the block and the new size of the block (a long word).
For example, suppose your code block has an initialization sequence 743 bytes long
which is located at the very end of the block. If you expect to be tight on memory
space, you may want to dispose of it after you are through with it. Here is how you
can do that:

PushLong CodeHndl :Push handle to code bleock
SEC

LDA Size +New size = old size

SBC #743 : minus 743.

PHA

LDA Size+2

SBC #0

FHA

_SetHandleSize

Data Movement. The Memory Manager has four functions that permit you to
move a block of data from anywhere in memory to anywhere else in memory. All
you need is a pointer or handle to the start of the source block and to the destination
block. If you use a handle, the Memory Manager function takes care of dereferencing
it.

Here is a summary of how each of the four data movement functions work:

PtrtoHand Move a block referenced by a pointer to a block referenced by
a handle

HandtoPtr Move a block referenced by a handle to a block referenced by
a pointer

HandtoHand Move a block referenced by a handle to a block referenced by
a handle

BlockMove Move a block referenced by a pointer to a block referenced by
a pointer

Each function requires three long-word parameters on the stack: a pointer or handle
to the source block, a pointer or handle to the destination block, and a count of the
number of bytes to move.

120 Memory Management

Be very careful when using the data movement functions. They do not verify the
validity of handles and pointers, and they do not check to see if the destination

block is large enough to accommodate the transfer.

Free Space Functions. Three Memory Manager functions return numbers reflect-
ing the sizes of various spaces in the system:

FreeMem returns the number of free bytes in memory. The number does not
include the space occupied by purgeable blocks. FreeMem does not compact

mMemory.

MaxBlock returns the size of the largest free block in memory. MaxBlock does
not compact memory and it does not purge purgeable blocks. The number
returned by MaxBlock cannot exceed the one returned by FreeMem because
of block fragmentation.

TotalMem returns the size of the RAM space in the system.

None of these functions takes input parameters, and all three functions return a

long word (the size in bytes).

REFERENCE SECTION

Table R4-1: The Major Functions in the Memory Manager Tool Set (302)
Function Stack Description of

Function Name Number Parameters Parameter

BlockMove $2B SourcePtr (L) Pointer to source block
DestPtr (L) Pointer to destination block
Count (L) Number of bytes to copy

CheckHandle 31E TheHandle (L) Handle to be validated (*)

CompactMem 31F [no parameters)

DisposeAll $11 UserID (W) ID tag for blocks to dispose

DisposeHandle 510 TheHandle (L) Handle to block to dispose

FindHandle $1A result (L) Handle for block
MemLocation (L) Location to test

FreeMem $1B result (L) Amount of free memory

Reference Section 121

Function Stack Deseription of
Function Name Number Parameters Parameter -
GetHandleSize 818 result (L) Size of block in bytes
TheHandle (L} Handle to block
HandtoHand $2A SourceHndl (L) Handle to source block
DestHndl (L) Handle to destination block
Count (L) Number of bytes to copy
HandtoPtr %29 SourceHnd! (L) Handle to source block
DestPtr (L) Pointer to destination block
Count (L) Number of bytes to copy
HLock $20 TheHandle (L) Handle to block to lock
HLockAll $21 UserlD (W) ID tag of blocks to lock
HUnLock §$22 TheHandle (L) Handle to block to unlock
HUnLockAll $23 UserID (W) 1D tag for blocks to unlock
MaxBlock 51C result (L) Size of largest free block
MMShutDown $03 UserID (W) ID tag returned by
MMStartup
MMStartup 502 result (W) ID tag for memory
allocation
NewHandle $09 result (L) Handle to new memory
block
BlockSize (L) Size of memory block
UserlD (W) ID tag for memory block
MemAttrib (W) Attributes of memory block
MemLocation (L) Allocation address
PtrtoHand 528 SourcePtr (L) Pointer to source block

122 Memory Management

DestHndl (L)
Count (L)

Handle to destination block

Number of bytes to copy

Description of
Parameter

Function Stack
Function Name Number Parameters
PurgeAll 313 UserlD (W)
PurgeHandle $12 TheHandle (L)
ReallocHandle $0A BlockSize (L)
UserlD (W)
MemAttrib (W)
MemLocation (L)
TheHandle (L)
Restore Handle S0B TheHandle (L)
SetHandleSize $19 NewSize (L)
TheHandle (L)
SetPurge 524 PurgeLevel (W)
TheHandle (L)
SetPurgeAll $25 PurgeLevel (W)
UserlD (W)
$1D result (L)

TotalMem

1D tag for blocks to purge
Handle to purge

Size of memory block

1D tag for memory block
Attributes of memory block
Allocation address

Handle to re-use

Handle to be restored
New size of block

Handle to block to be
resized

New purge level

Handle to memory block
New purge level for blocks
1D tag for blocks involved

System memory size

* For CheckHandle, an error code of 30206 is returned if the handle is not valid.

Table R4-2:

Memory Manager Error Codes

Error Code Description of Error Condition

$0201

50202

Out of memory; the block was not allocated.

The operation failed because the block has been purged.

Reference Section 123

Error Code Description of Error Condition

$0203

50204
$0205
$0206
$0207
50208

An attempt was made to reallocate (with ReallocHandle) a handle of
a block that has not been purged vet.

The operation failed because the block is locked or immovable.
An attempt was made to purge an unpurgeable block.

The handle does not exist.

The ID tag does not exist.

Illegal operation on a block with the specified attributes.

124 Memory Management

CHAPTER 5

Event
Management

An important part of any application program is the code that checks for user input
and responds to it in an appropriate way. The two main sources of user input on
the cs are the keyboard and the mouse, but incoming data can also come from any
other device on the Apple DeskTop Bus or from a device connected to a port or
slot. The occurrence of a discrete element of input activity is called an event and
the tool set an application uses to monitor events is called the Event Manager.

The Event Manager actually handles more than just traditional mouse and key-
board events. It also manages two window-related operations that take place when
the appearance of a window on the graphics screen is to be changed—namely,
activate/deactivate events and update events. (Windows will be discussed in detail
in the next chapter.) The Gs operating system treats activate/deactivate and update
activities as events to make it easier to develop software working in a multiwindow
environment,

THE EVENT LOOP

Any Gs application that uses the desktop environment should be event-driven. That
is, the application should be ready, at all times, to react to any event which might
occur. It should avoid putting the user in a mode that restricts the group of actions
the user may perform, because this only serves to frustrate the user. Of course,
there are times when restrictive modes are desirable, such as when the application
wants to force the user to respond to an important question before proceeding
further, but such modes are not needed often.

An event-driven application spends most of its time in an event loop, in which
it repeatedly checks for the occurrence of an event. When an event occurs, the
application responds to it and then returns to the loop and waits for the next event.
Here is the simplified flowchart of an event-driven application:

125

Event
Loop
o:::rnried? No
Handle Event >

As you can see, the main task of an event loop is to check whether an event has
occurred. This is a very simple task involving the use of the Event Manager's
GetNextEvent function. The actual handling of an event is more complicated but
still quite straightforward. The most difficult part of any application, of course, is
the part actually performing the tasks selected by the user.

Initializing the Event Manager

Chapter 3 explained that before vou can use any tool set you must initialize it by
calling its start-up function. The name of the start-up function for the Event Manager
is EMStartup. Call it right after starting up the Tool Locator and the Memory
Manager with calls to TLStartup and MMStartup.

The calling sequence for EMStartup looks like this:

PushWord DPAddr iOne page in bank $00
PushWerd #QueueSize i51ze of event queue

PushWord #XMinClamp iMouse minimum (horiz)
Pushldord #XMaxClamp iMouse maximum (horiz)

126 Event Management

PushiWord #YMinClamp :Mouse minimum (vert)

PushWord #YMaxClamp ;Mouse maximum (vert)
PushWord UserlID ;1D returned by MMStartup
_EMStartup

EMStartup does not return a result.

DPAddr is the starting address of a 256-byte area in bank $00 that the Event
Manager uses as a direct page. EMStartup puts this address in the Work Area
Pointer table using the Tool Locator’s SetWAP function. Use the Memory M anager’s
NewHandle call to allocate the bank 800 space:

PHA iSpace for result

PHA

PushLong #256 sMeed one page (256 bytes)

PushWord UserlID ;1D returned by MMStartup

PushWord #3%C005 :Locked, Static, Fixed Bank, Aligned
PushLong #%000000 :Address: bank %00

_HewHandle

PopLong MyHandle ;Pop handle to block

To determine the actual direct page address to be used as DPAddr, you must first
dereference the handle using the techniques described in the last chapter. The
address is the low-order word of the dereferenced handle.

QueueSize is the number of events the Event Manager can keep track of at one
time. The events are posted in a queune as they are detected and are removed one
at a time as the application calls GetNextEvent. If the application does not retrieve
events from the queue often enough, the queue could fill up, causing older events
to be lost as they are replaced by more recent events. QueueSize must be an integer
between 0 and 3639. If a value of 0 is specified, a default size of 20 is used; this is
a suitable size for most applications.

The four clamp parameters describe the coordinates of the rectangle in which
the mouse pointer will be confined on the screen. XMinClamp and XMaxClamp
refer to the left and right sides of the rectangle, and YMinClamp and YMaxClamp
refer to the top and bottom sides. The clamp parameters are usually set to the
coordinates of the full graphics screen so that the user can point to any object on
the screen. This means that XMinClamp and YMinClamp will be 0, and YMaxClamp
will be 200. The value of XMaxClamp depends on the graphics mode in use; it will
he 320 for 320-by-200 mode, or 640 for 640-by-200 mode. To ensure that you can
always see the mouse’s arrow cursor, however, you may want to set XMaxClamp
and YMaxClamp to values that are two or three pixels smaller than the full screen
dimensions.

UserlD is the ID code returned by MMStartup. It is used when the Event
Manager calls the Memory Manager to allocate any blocks it needs to operate.

To shut down the Event Manager, call EMShutdown. It requires no parameters.

The Event Loop 127

Table 5-1: Events Handled by the Event Manager

Mouse Events Keyboard Events
Mouse-down Kev-down
Mouse-up Auto-key
Window Events Special Events
Update Desk accessory
Activate Switch

Device driver
Application-defined (4)

EVENT TYPES

The Event Manager supports 16 types of events. Tl s includes a null event that is
reported when no other type of event has taken plaut " efore a request for an event
is made with GetNextEvent. Two of the 16 event ty: s are not currently in use, so
there are really only 14 event types that may be reported.

The different events handled by the Event Manager can be broken into four
groups: mouse events, keyboard events, window events, and special events. See
the breakdown in table 5-1.

Mouse Events

There are two mouse events, mouse-down and mouse-up. A mouse-down event
occurs when a released mouse button is pressed. A mouse-up event occurs when a
pressed mouse button is released.

The Event Manager actually works with a two-button mouse (or an alternative
pointing device with two buttons), but the same event codes for mouse-up and
mouse-down are reported for either button. You can determine which button was
actually involved in the event by examining the Modifiers field of the event record
returned by GetNextEvent, as vou will see later in this chapter.

You can determine: the state of the mouse button directly with the Button
function:

PHA ;jspace for result
PushlWord #0 sbutton number (0 or 1)
_Button

PLA ;True = button 1s down

For the standard ¢s mouse, the button number must always be zero. The Boolean
result is true (non-zero) if the button is down or false (zero) if it is not.

128 Event Management

Keyboard Events

The two kevboard events are key-down and auto-key. A key-down event occurs
when a released character key is pressed. A character key is one which generates
an ASCII character code when pressed by itself. Every key on the keyboard is a
character key except the Shift, Caps Lock, Open-Apple (Command), Control, and
Option (Solid-Apple) keys. These keys are called modifier keys because they are
usually pressed at the same time as a character key to change, or modify, the ASCII
code it would otherwise generate.

If you hold down a character key long enough it will begin to repeat itself. The
act of repetition is called an auto-key event. The repeat rate can be set with the
Control Panel desk accessory; you can even turn off the auto-repeat feature if you
wish,

Window Events

The two window-related events are update and activate. An update event occurs
when a portion of a window on the screen becomes exposed to view. This happens
when the window is first created, when an overlapping window is moved aside, or
when the window is enlarged.

An activate event occurs when a window becomes active or inactive. By conven-
tion, an active window is one that is to be affected by subsequent commands and
drawing operations. The active window is highlighted in a distinctive way on the
screen,

To determine the reason for an activate event, you can examine a bit flag in the
Modifiers flag of the event record returned b'-}' GetNextEvent. If the bit is 0, the
activate event actually corresponds to a window becoming inactive.

Special Events

Most of the events not already discussed above are rarely used by an application.
There are four application-defined events an application can post in the queue to
report a custom event, perhaps the occurrence of a specific combination of events.

The desk accessory event occurs when a user enters Control-OpenApple-Esc
from the keyboard. It is never reported to the application by GetNextEvent; rather,
it is trapped by the operating system’s main event-handling routine and handled by
popping up the Classic Desk Accessory menu (the one containing the Control Panel
entry).

A switch event occurs when the user clicks a switcher control icon to transfer
control to another application in memory. A switcher program is not yet available
for the Gs, however.

A driver for an I/O device can report a device driver event when it has received
data. It may also report an event if it is ready to send data.

Event Types 129

Figure 5-1. The Event Mask Used by GetNextEvent and TaskMaster

||5||4|13l12|11|1015|3|7is|5[4|3|21||u|

spplication *4 null event
application *3 mouse dowr
gpplicetion *#2 mouse up
application #* 1 key down
device driver [reserved]
desk accessory auto-key
witch updste
sctivate /deactivate [reserved]

NOTE: An event type is selected if its bit is 1; otherwise it is ignored.

GETNEXTEVENT AND THE EVENT LOOP

The Event Manager function that scans the event queue for the presence of an
event is GetNextEvent. GetNextEvent returns a Boolean (true/false) result indicat-
ing whether there was anything in the queue. If the queue is empty, the result is
false (zero), and the application can complete the event loop by calling GetNextEvent
again.

Here is how to call GetNextEvent:

PHA ;space for result
PushWord #$FFFF ;event mask

PushPtr EventRec ;Pointer to event record
_GetNextEvent

PLA ;Pop Boolean result

The event mask tells GetNextEvent which events are to be reported. As shown in
figure 5-1, each bit in the event mask word corresponds to a particular type of
event. If the bit corresponding to an event is 1, that event can be reported. If you
are interested in all types of events, pass an event mask of $FFFF to GetNextEvent.

EventRec is a 16-byte event record. GetNextEvent fills the event record with
information describing the event it removes from the queue. The structure of an
event record is as follows:

130 Event Management

EventRec ANOP

what DS 2 ;event code (integer)

message DS 4 ;event message (long word)

when DS 4 ;ticks since system startup (long word)
where DS 4 sjmouse position (point)

modifiers DS 2 smodifier flags (integer)

It is also advisable to reserve space for two other long word fields immediately
following the event record: TaskData and TaskMask. They are used by the Task-
Master function (described below), not by GetNextEvent. You will probably use
TaskMaster more often.

The What Field

The What field of the record contains the event code, an integer from 0 to 15
identifying what type of event occurred:

= null event (no event occurred)
mouse-down event

mouse-up event

key-down event

[not used]

auto-key event (a key was repeated)
window update event

[not used]

= window activate event

switch event

desk accessory event

device driver event
application-defined event
application-defined event

= application-defined event
application-defined event

L | | B

B . B e
Nawm—_ocodo~NoOunrwm—=o
T T |

Notice that two codes in this range, 4 and 7, are not presently defined. On the
Macintosh, an event code of 4 corresponds to a key-up event.

The Message Field

The Message field of the event record holds a 4-byte event message containing more
information about the event. The content of the event message depends on the
event type:

GetNextEvent and the Event Loop 131

mouse-down button number (0 or 1)

mouse-up button number (0 or 1)
key-down ASCII character code (0 to 127)
auto-key ASCII character code (0 to 127)
window update Pointer to window

window activate Pointer to window

device driver Defined by the device driver

application-defined ~ Defined by the application
The event message for all other event types is undefined.

The When Field

The When field contains the time when the event took place. It is expressed in
ticks since system start-up. A tick is a unit of time equal to one-sixtieth of a second.

The Where Field

The Where field holds the vertical and horizontal position of the mouse on the
screen when the event occurred. The position is calculated using the global coor-
dinate system. In this coordinate system, the origin is the top left-hand corner of
the screen and the horizontal and vertical axes increase to the right and down,
respectively.

The Modifiers Field

The last field in an event record holds the modifier flags (see figure 5-2). These
flags indicate the states of the keyboard modifier keys, the keypad, and the mouse
buttons when the event took place.

Maodifier keys are keys that, by themselves, do not generate character codes when
you press them: Shift, Caps Lock, Control, Option (also called Solid-Apple), and
Open-Apple (also called Command). An application will inspect the modifier flags
if it is designed to differentiate between events that take place when a modifier key
is pressed and events that are unmodified. For example, an application might want
to let a user select a single icon by clicking a mouse button over that icon, or it
might allow the user to select a group of icons by clicking the mouse button over
each icon while holding down either Shift key. When such an application receives
a mouse-down event from GetNextEvent, it would check the modifiers field to see
if the Shift key was being pressed.

The flag for a modifier key is 1 if the key is down, and 0 if it is up. The BtnOState
and BtnlState flags behave in the opposite way—a 1 corresponds to a button-up
state,

132 Event Management

Figure 5-2. The Format of the Modifiers Field of an Event Record
or Task Record

rotuzed [11[i0[5 [8]7] metuiea [1]0]

1 = activat2
1 = mouse down 0 = desctivate

0 = mouse up

| 1 =system/appl
| 1 =command key down switch

0 = command key up 0 = nochange in
window type

= shift key down

1
0 = shift key up

1 = caps lock down
0 = caps lock up

1 = option key down
0 = option key up

Command Key = Open-Apple Option Key = Solid-Apple

Two other flags in the Modifiers field relate only to window activate/deactivate
events. One flag, ActiveFlag, indicates whether the window is being activated (1)
or deactivated (0), and the other flag indicates whether the newly activated window
is of a different type from the previously active window (1) or whether it is the same
type (0). (Windows are either application windows or system windows. System
windows are those created by New Desk Accessories; see chapter 9.)

The Event Loop

The code for a simple event loop is remarkably straightforward:

EvtLoop PHA iSpace for result
Pushlord #$FFFF ;Event mask: all events
PushPtr EventRec :Pointer to event record

_GetNextEvent
PLA 1Get the Boolean result
BEGQ EvtLoop sBranch if no event

Until an event occurs, the code between EvtLoop and the “BEQ EvtLoop™ instruc-
tion is executed again and again. This is because the result is always false ($0000),
which means that the zero flag is set after the PLA instruction. When an event is

GetNextEvent and the Event Loop 133

reported, the result is true (non-zero), the zero Hag is cleared by the PLA instruction,
and control passes through the bottom of the loop.

The code following the loop can read the event type code from the What field of
the event record and then pass control to the subroutine that handles that event
tvpe. Here is an example of a piece of code that does just that:

LDA HWhat ;Get event type code

ASL &} ;Double it to gel table offset

TAX ;Set up index for JMP (addr,X)

JMP {EvtTable,X) ;Jump to event handler
EvtTable DC I'lgnore! sHull event

DC I'DoMouseDown’ ;Mouse-down

Dc ['DoMouselp! ;Mouse-up

DC ['"DoKeyDown! ;Key-down

DC I'Ignore! ;Inot used]

DC I 'DeMouseDown’ ;Auto-key

DC ['DoUpdate! sWindow update

DC I'lIgnore! :[not used]

Dc I['DoActivate! jWindow activate

DC I1'lgnore’ ;Switch

Dc I'Ignore! ;Desk Accessory

DC ['"DoDriver! :Device Driver

Dc ['DoApplt! jApplication-defined #1

DC I 'DoAppl2! ;Application-defined #2

Dc ['DoAppl3? ;Application-defined #3

Dc ['DoAppl4! ;Application-defined #4

Ignore JMP EvtlLoop

Notice how this technique works. The entries in EvtTable are the addresses of the
handlers for each event type, in event-type order. Because each address is two bytes
long, the entry for a particular event is at an offset from EvtTable equal to two times
the event type code value. This means that you can jump to the handler with a
JMPF (EvtTable,X) instruction, where X holds the offset.

If the application deals with only a few types of events, it may be more convenient
to use a series of CMP (compare) instructions to route the application to the proper
event handler. Suppose, for example, an application handles mouse-down and key-
down events but ignores every other type of event. You could pass control to the
two event handlers using a code fragment like this:

LDA What ;Get event type code
CMP #1 ;Is 1t mouse-down?
BNE CheckKD sNo, so branch

BRL DoMouseDown ;1¥es, so branch

134 Event Management

CheckKD CMP #3 ils it key-down?

BNE Ignore ;No, so branch
BRL DoKeyDown ;¥Yes, so branch
Ignore JMF Evtloop ;Back to the event loop

Notice that BRL rather than BRA instructions are used to branch to the event-
handling subroutines. This is because the target address of a BRL instruction can
be anywhere in the 64K program bank, whereas the target address for a BRA
instruction is restricted to an address in the range -128 to +127 bytes from the next
instruction.

If GetNextEvent returns a non-null event, it automatically removes the event
from the queue. To determine what the next event is without removing the event
from the queue, use EventAvail:

PHA sspace for result
PushWord #$FFFF ;event mask

PushWord EventRec +Pointer to event record
_EventAvail

PLA ;Boolean: always true

After calling EventAvail, information about the next event in the queue can be
found in the event record.

Before entering an event loop at the beginning of a program, you may want to
remove any events which may be lingering in the event queue. To do this, call
FlushEvents:

PHA ;space for result

Pushlord #$FFFF ;EventMask for events to remove
PushWord #$0000 ;StopMask for events to keep
_FlushEvents

PLA sMask for first event not removed

The first mask passed to FlushEvents describes the types of events that are to be
removed from the queue, The second mask, called StopMask, describes the types
of events that are to stop the removal process. FlushEvents scans the queue from
the beginning and removes all events up to (but not including) any event described
by StopMask. The result it returns is the mask for the first event which was not
removed. If the result is zero, all events were removed.

In most cases you will want to remove every event from the queue. To do this,
use an EventMask of 3FFFF and a StopMask of $0000, as in the example.

POSTING EVENTS

In certain situations it may be convenient to place events in the event queue
yourself. For example, you would do this to pass application-defined events to the
system. To place an event in the queue, call PostEvent:

Posting Events 135

PHA jspace for result

PushWord EventCode ;The event code

PushLong EventMsg ;The event message
_PostEvent

PLA ;True = event was posted

PostEvent places the event described by EventCode and EventMsg in the event
queue. It automatically assigns the current time, mouse location, and state of the
modifier keys and mouse button to the other fields of the event record. There is an
exception: for keyboard or mouse events, the modifiers word is set to the high-
order word of EventMsg.

HANDLING EVENTS

An application may handle an event any way it wants to, of course. There are,
however, certain rules that every application should follow when handling events
so as to conform to Apple’s user-interface guidelines. This section explains what
these rules are and how to react in special ways to mouse, keyboard, and window
events.

Before proceeding, a comment should be made about a useful function that is
actually part of the Window Manager, not the Event Manager: TaskMaster. You use
it much as you would use GetNextEvent; the difference is that TaskMaster processes
certain events in accordance with the user-interface guidelines before returning
control to the caller. This allows the programmer of an application to concentrate
on writing code unique to the application.

Here is an event loop using TaskMaster instead of GetNextEvent:

EvtLoop PHA ispace for result
Pushlord #$FFFF ;Event mask
PushPtr TaskRec sPointer to task record
_TaskMaster
PLA ;Pop the task code
BEQ EvtlLoop ;Branch if nothing to do

Looks familiar, right?

The program in listing 5-1 is a simple program shell that might assist you in
developing more complex desktop applications. At its core is a simple TaskMaster
event loop.

The task record referred to in this calling sequence is just a standard event record
followed by long word TaskData and TaskMask fields.

TaskData is a long word in which TaskMaster sometimes returns a result (usually
the pointer to a window). TaskMask is a bit vector indicating just which tasks
TaskMaster is to handle (see figure 5-3). If the bit for a particular task is 0, the
event code for the task is returned just as if you had called GetNextEvent. It is
then up to the application to deal with it in an appropriate way. In most cases, you

136 Event Management

Figure 5-3. The Format of the Task Mask Used by TaskMaster

low-order word:

115|u]13|1:|11|1o|::|a]7|5L:i|413|z[1]n]

T 11 }
I—1 = handle keyboard eguivalents
{menu selection)

1 = handle window updates

| = handle mouse-doawn events
{with Findwindow)

L ——1 = handle menu selection
{(with MenuSelect)

| = hendle opening of DA items
{with OpenNDA)

1 = handle clicks in DA windows
{with SystemClick)

| = handle dreg operations
(with DregWindow)

| = activele window if mouse 1s
down inside window

| = handle close box aclivity
{with TrackGoAway)

| = handle zoom box activity
{with TrackZoom)

1 = handle grow box activity
{with Growwindow, SizeWindow)

1 = handle scrolling

| = handle special Edit menu items
and special Close item
~OTE: Bits 13 through 31 of the task mask must be zero.

Handling Events 137

will want TaskMaster to handle evervthing it is designed for, so set the mask to
$00001FFF.

The first thing TaskMaster does is call GetNextEvent to get an event with which
it can work. If then deals with the event in a standard way and returns a task code;
if the code is 0, there is nothing more for the application to do and it can loop back
and call TaskMaster again.

Assuming the standard task mask is used, TaskMaster may return the following

codes:

inKey (3) When a key is pressed which is not the keyboard equiv-
alent of a menu item
inUpdate (6) When the window to be updated does not have an

update drawing subroutine; see chapter 6.

wlnMenuBar (17} When a menu item is selected which is not a desk
accessory item or a special item (undo, cut, copy, paste,
clear, close); see chapter T.

wInContent (19) When a mouse-down event occurs in the content re-
gion of the active window
wlnGoAway (22) When a mouse-down event oceurs in a close box of a

window and the button is released in the close box.
wlnSpecial (25) When a special menu item is selected which is not
accepted by a desk accessory
wlnFrame 27) When a mouse-down event occurs in the frame of an
active window (other than scroll controls)

TaskMaster also passes through mouse-up, auto-key, device driver, and application-
defined events with no pre-processing of any kind.

The sections that follow cover ways to handle standard Event Manager events.
In general, the descriptions given simply describe how TaskMaster handles the
events. There are no special requirements for reacting to switch, device driver, and
application-defined events. In addition, the desk accessory event is handled inter-
nally by the Event Manager.

Mouse-down

When a mouse-down event occurs, the user is usually selecting an object on the
screen. The program must determine what the object is—it could be a menu bar,
a window, a scroll control, or a line of text, for example—and then process the
selection in an appropriate way before returning to the main event loop. Techniques
for handling mouse-down events will be described in detail in chapters 6 and 7.

138 Event Management

Mouse-up

Mouse-up events are often handled by terminating an activity that began with the
previous mouse-down event. The classic example of such an activity is the dragging
of an object on the screen: while the mouse button is down, a selected object follows
the cursor around the screen; when the button is released, the object is released
and fixed in place. The program in listing 5-2, for example, lets you size a rectangle
by dragging the mouse and letting go.

Mouse-up events may also be handled by determining whether the button was
released when the mouse cursor was still in the same position on the screen as
when the mouse was first pressed. If it was not, the application may want to ignore
the mouse click. For example, the user-interface guidelines insist that a program
ignore a mouse-down event in the close or zoom box of a window if the button is
not also released in the box. The rationale for this dictum is that if the user leaves
the vicinity of the box, he probably wants to cancel the operation.

Another operation involving a mouse-up event is a double-click—the pressing
and releasing of the mouse button twice in quick succession. A double-click is
frequently used to shortcut an operation that normally requires two separate clicks,
such as the launching of an application from a program selector utility. Two consec-
utive clicks are to be treated as a double-click, instead of as two unrelated clicks, i
the following conditions are true: the time (in ticks) between the mouse-up event
for the first click and the mouse-down event for the second must be less than the
DblTime parameter; and both clicks must take place within the same object or
within a few pixels of the object.

To read the current setting of the DblTime parameter, use the Event Manager’s
GetDbITime function:

PHA ;Space for result (leng word)
PHA

_GetDblTime

PLA ;Pop the result

STA DblTime 3 (low)

PLA

STA DblTime+2 3 (high}

The default value for DblTime is 30 ticks, but it can be adjusted using the Gs's
Control Panel. The program in listing 5-3 shows how to detect double clicks; when
it finds one, it draws a small black box on the screen.

In each of the above three scenarios, the mouse-up event is closely related to
the previous mouse-down event. For this reason, mouse-up events are best handled
during the processing of the mouse-down event. Mouse-down events that occur in
the main event loop can be ignored.

Handling Events 139

In the handler for a mouse-down event, use the Event Manager's StillDown
function to wait for a mouse-up event to occur so that you can stop dragging an
object, check that the mouse is still in an action box, check for a double-click, or
whatever. Until the StillDown function returns a false (zero) result, the mouse
button is still down. Here is the calling sequence for StillDown:

PHA ;space for Boolean result

PushWord #0 jbutton number (always 0 for mouse)
_StillDown

PLA 3;Pop the result

BHE ItsDown ;Branch if it is still down

BEQ ItsUp ;Branch if it is up

StillDown does not actually remove the mouse-up event from the event queune—
GetNextEvent takes care of that when you return to the event loop. If you prefer
that the event be removed, use the WaitMouseUp function instead of StillDown;
in all other respects the two functions work the same. You might want to use
WaitMouseUp if your event loop does not ignore mouse-up events.

Key-down and Auto-key

An application should react to a key-down event by checking to see if it corresponds
to the keyboard equivalent of a menu item (this is covered in chapter 7). If it is not,
there is no standard way of dealing with the character—it depends on the application.
If the user is entering a line of text, for example, the program should display the
character on the screen and update the active cursor position.

Auto-key events are usually handled in the same way as key-down events. You
may want to ignore them if they correspond to menu item equivalents, however,
because you do not usually want commands entered from menus to repeat auto-
matically.

Window Update
An update event occurs when a portion of a window needs to be redrawn. Such an

event occurs in the following situations:

* When the window first appears on the screen (after NewWindow or
ShowWindow)

» When an overlapping window is moved aside to make visible a new portion
of the window's content region

* When the window is enlarged by tugging on its grow box

« When a portion of the content region is made invalid with InvalRect or
InvalRgn

140 Event Management

The window's update region defines the portion of a window that requires redrawing.
This may be the entire content region or any part of it. Details on how to handle
update events will be given in chapter 6.

Window Activate

Window activate events actually include deactivate events. To distinguish between
the two, examine bit 0 of the Modifiers field of the event record. If it is 1, it is an
activate event.

Activate events are handled by highlighting the window and bringing it to the
front of the screen. Highlighting involves drawing racing stripes in the title portion
of the window and drawing the detailed structure of scroll controls. These areas in
an inactive window are white.

Activate events are described in more detail in chapter 6.

CURSORS

The cursor-handling functions are actually part of the QuickDraw tool set (see
chapter 6) but it is appropriate to discuss them here because they are tied to a
rather common user activity (although not an event handled by the Event Manager):
moving the mouse. A cursor is a small icon that moves around the screen as you
move the mouse around the tabletop. It serves to inform the user of the position of
the mouse on the screen.

(A program can determine the current position of the mouse by calling GetMouse:

PushPtr MousePosn ;Ptr to space for result
_GetMouse
RTS

MousePosn DS 4 sPosition in local coordinates

Note that the mouse position is returned in the local coordinates of the currently
active drawing window. See the next chapter for a discussion of local coordinates.)

The standard cursor is a small arrow. To make it visible, call InitCursor (no
parameters) after starting up QuickDraw. You can switch to a custom cursor using
the SetCursor function:

PushPtr TheCursor ;Pointer to cursor record
_SetCursor

The Cursor points to a cursor record that defines the size and shape of the cursor.
The structure of this record is as follows:

Cursors 141

Cursor height (word) Height of cursor rectangle in rows

Cursor width (word) Width of cursor rectangle in words

Cursor image (bytes) Cursor definition, row by row

Cursor mask (bytes) Cursor mask, row by row

Hot spot Y (word); The hot spot is the position in the rectangle that is
Hot spot X (word) aligned with the mouse position

Note that the width of the cursor takes into account the “chunkiness” of the graphics
screen, that is, whether two (640-by-200 mode) or four (320-by-200 mode) bits are
needed to define a dot on the screen. (Screen resolution is discussed in detail in the
next chapter.) Note also that the last word in the group of words defining a row in the
cursor must be zero.

The cursor mask indicates which parts of the cursor image are to be drawn on the
screen. Only those bits in the cursor image that correspond to 1 bits in the cursor mask
are used. The cursor mask is generally a filled-in outline of the cursor surrounded by a
one-pixel “glove.” This makes the cursor visible even if it is positioned over an area that
is the same color as the cursor.

Below is the record for a cursor in 320 graphics mode (4 bits per pixel); this forms an
I-beam, the standard text-insertion cursor.

DC 1211 ;Height (in pixel rows)
DC 12'4! sWidth (in words)
bc H10000000000000000"
DC H'0000FFFOFFFOOOOQO!
pc H'0000000FC0000000!
Dc H'0000000F00000000"
DC H'0000000FOOOOOOOD!
DC H'0000000F00000000"
DC H'0000000FO000D000C!
DC H'0000000F00000000!
Dc H'0000000F0QO00000D!
DC H'O000OFFFOFFFO0000!
Dc H'0000000000000000"
Dc H'0000FFFOFFFO0000!
DC H'OOOFFFFFFFFFO000!
Dc H'0000FFFFFFFO0000O!
Dc H!000000FFFOOO0DOO!
DC H'0D0000OFFFOO00000!
Dc H'00DOOOFFFOOO0000D!
Dc H'000000FFFOOOOQODOO!
DC H'000000FFFO0OOO00D!
oc H'0000FFFFFFFO0D0D!

142 Event Management

DC HI0DOFFFFFFFFFO000"
DC H'0000FFFOFFF00000"

DC [egrg, 7 ;Hot spot (base of [-Beam)

You can locate the cursor record for the currently active cursor with GetCursorAdr:

PHA ;iSpace for result
PHA

_GetCursorAdr

Foanng CursorPtr ;Pop the result

If you wish to switch cursors temporarily, use GetCursorAdr to get the pointer to
the current cursor and then use the pointer when restoring the cursor with Set-
Cursor.

If you want to remove the cursor from the screen for any reason, call HideCursor.
To make it visible again, call ShowCursor. Neither function requires parameters or
returns results,

If you are using a cursor to identify a position where text may be entered, you
may want to make the cursor blink by hiding and showing it at a fixed rate. The
blink rate should be the one set by the Control Panel's Cursor Flash command; it
can be read using the GetCaretTime function:

PHA ;space for result
PHA

_GetCaretTime

PopLeng CaretTime

The long result is expressed in ticks (sixtieths of a second). The default Control
Panel setting is 30 (half a second).

One handy cursor function is ObscureCursor. It removes the cursor from the
screen until the mouse moves. Use it to eliminate the mouse cursor while a user is
typing something in from the kevboard. It requires no parameters,

The QuickDraw Auxiliary tool set contains a function called WaitCursor that you
can use to change the cursor to a wristwatch. You should call it just before performing
a time-consuming operation to inform the user that the program will not be respond-
ing to input for a while. To restore the arrow cursor, call InitCursor. WaitCursor
requires no input parameters and returns no results,

To start up the QuickDraw Auxiliary tool set, call the QDAuxStartup function.
To shut it down, call QDAuxShutDown. Neither function requires parameters nor
returns results.

Cursors 143

CLOCK FUNCTIONS

As mentioned in chapter 1, the ¢s has a built-in clock/calendar chip that maintains
the current time and date. You can set the current time and date with the Control
Panel.

One common [/O operation (which, like mouse movement, is not handled by the
Event Manager) is reading the time and date so that you can display it on the screen
or insert it in a printed report. The Miscellaneous Tool Set includes two functions
you can use to read the clock: ReadAsciiTime and ReadTimeHex.

(The start up and shut down functions for the Miscellaneous Tool Set are MTStart-
up and MTShutDown. Neither one requires parameters nor returns results.)

ReadAsciiTime, as its name suggests, returns a 20-byte ASCII-encoded character
string describing the current da*e and time. To call it, pass a pointer to a previously-
allocated 20-byte data area:

PushPtr Timestring s:Pointer to string area
_ReadAsciiTime :Read the time

RTS

TimeString DS 20 ;Space for time string

The time string is not preceded by a length byte. It is always exactly 20 characters
long and the high-order bit in each byte is set to one.

The string returned by ReadAsciiTime uses one of three date formats and one of
two time formats. Altogether, there are six formatting combinations (dd = day of
month, MM = month, yy = vear, hh = hours, mm = minutes, and ss = seconds):

dd/MM/yy hh:mm:ss XM (XM = AM or PM)

MM/dd/yy hh:mm:ss XM (this is the default)
yy/MM/dd hh:mm:ss XM

dd/MM/yy hh:mm:ss (24-hour military format)

MM/dd/yy hh:mm:ss
yy/MM/dd hh:mm:ss

The date and time formats actually used are those set by the Clock command in the
Control Panel.

If you are not satisfied with the look of the string that ReadAsciiTime returns,
use ReadTimeHex to return the current time and date in binary form and then
manipulate the data as you like. Here is how to call ReadTimeHex:

PHA ;Space for DayOfWeek/[unused] bytes
FPHA iSpace for Month/DayDfMonth

PHA ;Space for Year/Hour

PHA ;Space for Minute/Second
_ReadTimeHex

144 Event Management

SEP #%20
LONGA OFF

PLA

STA Second
PLA

STA Minute
PLA

STA Hour

PLA

STA Year

PLA

STA DayOfMonth
PLA

STA Month

PLA

PLA

STA DayOfleek
REP #%20
LONGA ON

;Switch to B-bit A for byte data

;Pop Second

;Pop Minute

;Pop Hour

;Pop Year

;Pop Day of Month
;Pop Month

;Pop unused byte
;Pop Day of MWeek

;Return to 16-bit accumulator

The values returned by ReadTimeHex are as follows:

FUNCTION

DayOfWeek
Year

Month
DayOfMonth
Hours
Minutes
Seconds

VALUE

..7T (1=Sunday, 2=Monday, etc.)
.99 (Year minus 1900)
..11 (1=January, 2=February, ete.)

.23
..59
..59

1
0
0
0..30 (Day of month minus 1)
0
0
0

Remember that ReadTimeHex was the function used by the user-defined TimeTools
tool set in chapter 3 to determine the day of the week code prior to converting it to a

text string.

One other useful time-related function is TickCount. Use it to determine the number
of ticks that have elapsed since the Gs was started up (a tick is 1/60th of a second) .

Here is how to call TickCount:

PHA
PHA

_TickCount

PopLong

NumTicks

;Space for long result

;Pop the result

Clock Functions 145

To put a delay loop in a program, call TickCount once before entering the loop and
then keep calling it until the difference between the result and the starting value is
greater than or equal to the desired delay.

To generate a two-second (120-tick) delay, for example, use the following code
fragment:

PHA

PHA

_TickCount ;Get starting tick count
PopLong TickStart

DelayLoop PHA
PHA
_TickCount :Get current tick count
PopLong TickCurr

SEC :Calculate time difference
LDA TickCurr

SBC TickStart

STA TickCurr

LDA TiceCurr+2

SBC TickStart+2

STA TickCurr+2

SEC ;Subtract 120 (long)
LDA TickCurr

SBC #120

LDA TickCurr+2

SBC #0

BCC Delayloop +Branch if < 120
RTS

TickStart DS 4
TickCurr DS 4

Notice that the carry flag, which is set before a subtraction operation, becomes clear
if the number being subtracted is greater than or equal to the number in the
accumulator.

146 Event Management

REFERENCE SECTION

Table R5-1:

The Major Functions in the Event Manager Tool Set ($06)

Function Stack Description of

Function Name Number Parameters Parameter

Button 50D result (W) Boolean: is the button down?
ButtonNum (W) Button number

EMStartup 502 DPAddr (W) Address of 1 page in bank 0
QueueSize (W) Size of event queue
XMinClamp (W) Mouse minimum (horizontal)
XMaxClamp (W) Mouse maximum (horizontal)
YMinClamp (W) Mouse minimum (vertical)
YMaxClamp (W) Mouse maximum (vertical)
UserlD (W) ID tag for memory allocation

EMShutDown %03 [no parameters]

EventAvail $0B result (W) Boolean: always true
EventMask (W) Event mask
EventRecord (L} Ptr to event record

FlushEvents 515 result (W) Mask for next event in queue
EventMask (W) Mask for events to be Hushed
StopMask (W) Masks for events to be kept

GetCaretTime $12 result (L) Ticks between cursor blinks

GetDblTime 511 result (L) Interval for double-clicks

GetMouse 30C MouseLocPtr (L) Ptr to mouse point (local)

GetNextEvent S0A result (W) Boolean: was event retrieved?

EventMask (W)

EventRecord (L)

Event mask

Ptr to space for event record

Reference Section 147

Function Stack Description of

Function Name ~ Number Parameters Parameter

PostEvent $14 result (W) Boolean: was event posted?
EventCode (W) Event code to place in queue
EventMsg (L) Message word for event

record

StillDown S0E result (W) Boolean: button still down?
ButtonNum (W) Button number

TickCount $10 result (L) Ticks since system startup

WaitMouseUp SOF result (W) Boolean: button still down?

ButtonNum (W) Button number

Table R5-2: Event Manager Error Codes

Error

Code Description of Error Condition

0601 The Event Manager has already been started up.

$0602 Reset error.

%0603 The Event Manager is not active.

$0604 The event code is greater than 15.

$0605 The specified button number is not 0 or 1.

30606 The size of the event queue is greater than 3639.

$0607 There is not enough memory for the event
queue.

$0681 The event queue is seriously damaged.

$0682 The handle to the event queue is damaged.

148 Event Management

Table R5-3: Useful Functions in the Window Manager Tool Set (30E)
Function Stack Description of

Function Name Number Parameters Parameter -
TaskMaster 81D result (W) Event code

EventMask (W) Event mask

TaskRecord (L) Ptr to space for task record
Table R5-4: Useful Functions in the QuickDraw II Tool Set ($04)

Function Stack Description of

Function Name Number Parameters Parameter
GetCursorAdr $8F result (L) ptr to cursor record
HideCursor 590 [no parameters]
InitCursor SCA [no parameters]
ObscureCursor $92 [no parameters]
SetCursor $8E CursorRecord (L) ptr to cursor record
ShowCursor 591 [no parameters]

Table R5-5: Useful Functions in the QuickDraw Auxiliary Tool Set (312)

Funection Stack Description of

Function Name Number Parameters Parameter
QDAuxShutDown 503 [no parameters]
QDAuxStartup $02 [no parameters]
WaitCursor $0A [no parameters]
Table R5-6: Useful Functions in the Miscellaneous Tool Set ($03)

Function Stack Description of
Function Name Number Parameters Parameter
MTShutDown 503 [no parameters]
MTStartup 502 [no parameters]

Reference Section 149

Function Stack Description of
Function Name Number Parameters Parameter
ReadAsciiTime $0F TiméString (L) Ptr to 20-byte time string
ReadTimeHex 0D result (W) Day of week (high byte)
result (W) Month (high), Date (low)
result (W) Year-1900 (high), Hour (low)
result (W) Minute (high), Second (low)

150 Event Management

Listing 5-1:

A Program for Assisting in the Development of Other Programs

FEAFREBRBF AR R IR R FREAN BRI R R AR R RN AR AR

* You can use this program as a shell *
+ for writing a complete G5 application. *

EFAEEF AR AR R ER R A RRRB RV R F R R FA AR AR AR

LIST OFF

ABSADDR ON

INSTIME ON

GEN OFF

SYMBOL OFF

KEEP SHELL

MCoPY SHELL .MAC
MyCode START

Using GlobalData

Using StartData

JSR DoStartUp

; Define and display the menu bar:

PushLong #0
PushPtr MenulL2
_NewMenu
PushWord #0
_InsertMenu

PushLong #0
PushPtr Menul1
_NHewMenu
PushlWord #0
_InsertMenu

PushlWord #1
_FixAppleMenu

PHA
_FixMenuBar
PLA

_DrawMenuBar

; Define and display the window:

PHA

PHA

PushPtr MainWindow
_HewlWindow

;Object code file
;Macro file

;Start up all tool sets

1Add desk accessorles to menu

;Adjust size of menus/menu bar

;Space for result

;Pointer to window record

Reference Section 151

PopLong WindowPtr
_InitCursor

EvilLoop PHA
PushWord #SFFFF
PushPtr EventRec

_TaskMaster

PLA
CMP #wlnMenuBar
BEG DoMenu

: [check for other events herel
BRL EvtlLoop

Handle menu item selections.

£l

;Save pointer to window record
+Turn on the arrow cursor

;Allow all ewvents

;Get result code
;Menu item selected?
:Yes, so branch

:Back for more

(The items must be

; numbered sequentially from 256.)

DeMenu LDA TaskData
SEC
SBC #2586
ASL a
TAX
JSR (MenuTable , X
Pushllord #0
PushWord TaskData+2
_HiliteMenu
BRA EvtlLoop
; Table of menu item subroutine
MenuTable DC 1'DoAboutl!
DC I'"DoQuitl!
3 Dc ['DoYourltem
DoAboutl RTS
DoGQuitl] PLA
JMP DoShutDown
END
COPY STANDARD. ASM

152 Event Management

;Get menu item ID

;Convert to 0 base
;x2 to step into table

}

yHighlighting off
;1 Get menu ID

addresses:

256
257
258

sltem
;1tem

t i ltem

and so on

iPop return address
;Shut down all tool sets

GlobalData

; Menu/item line lists.

DATA

L cunsecutively from 258.

Menul 1

MenulL2

Dc
DC

DC
DC
DC

C'>>@\N1X!' ;H'0D?
C'##About this program

C'>> File \N2',H'OD!
C'##Quit\N257+Qq',H'0D
g T |

i Window parameters:

WindowPtr
MyTitle

MainWindow

WindRect

WindEnd

EventRec
What
Message
When
Where
Modifiers
TaskData
TaskMask

Ds

STR

4 sPointer
' GS Application !

[2'"WindEnd-MainWindow'
1*%x1000000010100101"
[4'MyTitle!

[4'00

1'0,0,0,0!

I4'0"

[v0,0!

1'0,0!

[vo,o0!

1'0,0!

1'0,0!

I4'0"

140!

1410¢

[2'ov

140!
1'30,10,18B5,400"
I4r-11

140

Ll I - A v

4'$00001FFF

If you add more items, number them

;Apple menu
<« \N25BV"' ;H' 0D

;File menu

sEnd of menu

to window

swindow frame definition
iPointer to window title
srefcon

;jzoom rectangle

scolor table

;origin offset

iheight ,width data area
;hexght.wldth max window
ivert, horiz scroll
ivert, horiz page

;info bar refcon

ijframe defproc

iinfo bar defproc

iinfo bar height
icontent defproc
;Content region rectangle
1At the front

iStorage

sEvent code

sEvent result

3Ticks since startup
iMouse location (global)
;Status of modifier keys
iTaskMaster data

Reference Section 153

Listing 5-2: A Program Showing How to Use StillDown and GetMouse

I EEE S E R E R R R R R R R R R R R R R RN R R E R E R RN R RS NS S

This program shows how to use the *
#* S5tillDown and GetMouse functions. By .
* pulling on the mouse with the button *
* down, you can create a rectangle of .
* any size, *
(E R
LIST OFF
ABSADDR ON
INSTIME ON
GEN OFF
SYMBOL OFF
KEEP DRAG sObject code file
MCOPY DRAG.MAC sMacro file
MyCode START

Uslng GlobalData
JSR DoStartUp

i Define and display the window:

PushLong #0 ;Space for result

PushPtr MainWindow ;Pointer to window record
_NewWindow

_StartDrawing ;iPrepare to draw in window

_InitCursor

EvtLoop PHA

PushlWord #S$FFFF ;All events
PushPtr EventRec
_TaskMaster
PLA ;1Get result code
CMP #keyDownEvt iKey-down?
BEG Exit :¥Yes, so branch
CMP #winContent ;in content region?
BNE EviLoop ijno, so ignore
JSR DoBoxes
BRA EviLoop

Exit JMP DoShutDown
END

154 Event Management

; Display a box on the screen. Size it using
; dragging techniques.

DoBoxes START
Using

GlobalData

PushPtr Where
_GlobalTolLocal ;convert to window coords

; Initial rectangle is a single pixel:

LD#A Where+h
STA BoxRect+left
STA BoxRect+right
LDA Where+v
5TA BoxRect+top
STA BoxRect+bottom
StretchIt PushPtr BoxRect
_InvertRect sdraw the new rectangle
StretchIt1 PHA ;space for result
PushWord #0 smouse button
_StillDown
PLA
BEG DragExit jbranch if not still down
PushPtr Mouseloc ;Get current mouse position
_GetMouse + {(local coords)

¥
-
¥

LDA
cmp
BNE
LDA
cmp
BEG

Saveloc LDA
STA
LDA
STA

If current location is same as last one, do nothing. This
avoids excessive flashing on the screen.

Mouseloc+h

LastLoc+h ;Horizontal matches?
Saveloc sMo, so branch
Mouseloc+w

LastLoc+v ;Vertical matches?
Stretchlt1 1Yes, so branch
MouseLoc+h ;Save the new position
LastLoc+h

Mouseloc+v
LastLoc+w

PushPtr BoxRect
_InvertRect ;erase the old rectangle

;i Arrange coordinates of the new rectangle in the
; standard top, left, bottom, right (TLBR) order:

Reference Section

155

LDA MouselLoc+h ;:Is new horizontal position

cMP Where+h : to the left of the base point?
BCC A +Yes, so branch
STA BoxRect+right
LDA Where+h
STA BoxRect+left
BRA _2
i STA BoxRect+left
LDA Where+h
STA BoxRect+right
2 LDA Mouseloc+v s+1s new vertical position
CMP Where+wv ;s above the base point?
BCC -3 ;Yes, so branch
STA BoxRect+bottom
LDA Where+wv
STA BoxRect+top
BRL Stretchlt
_3 STA BoxRect+tlop
LDA Where+v
STA BoxRect+bottom
BRL Stretchlt

DragExit RTS

END

COPY STANDARD.ASM
GlobalData DATA

3 Window parameters:

MyTitle STR ' Drag Demo '

MainWindow DC [2'WindEnd-MainWindow'
DC 1'%¥1000000000100000" ;jtitle bar only
DC [4'MyTitle! sPointer to window title
dec [4+0! srefcon
DC 1'0,0,0,0° ;zoom rectangle
Dc 14'0 ;color table
Dc [vg,a sinitial origin offset
DC 1'0,0! sheight,width data area
DC 1'0,0! sheight ,width max window
DC 1'0,0! ivert, horiz line
DC 1'0,0¢ ;jvert, horiz page
Dc 140! 1info bar refcon

156 Event Management

WindRect

WindEnd

Mouseloc
BoxRect
LastLoc

EventRec
What
Message
When
Where
Modifiers
TaskData
TaskMask

Listing 5-3:

Dc 120" ;info bar height

Dc [4vn? ;frame defproc

DC 1410 sinfo bar defproc

DC 140! ;content defproc

oc 1'30,10,185,500! ;Content region reclangle
Dc 141-11" At the front

DC 1410 ;Storage

ANOP

Ds 4 ;a point

Ds B :Coordinates of stretched rectangle
DS 4 ;@ point

ANOP

DS 2 ;Event code

DS 4 ;Event result

DS 4 :Ticks since startup

DS 4 ;Mouse location (global)

DS 2 ;S5tatus of modifier keys

DS 4 :TaskMaster data

DC 14'$00001FFF

END

A Program Showing How to Use GetDblTime and WaitMouseUp

iy R R R R
*» This program shows how to detect a double-click *
+ operation. When you double-click, it displays a ¢

+ black rectangle on the screen. *
Y Y Y rr s s e s R R R R R R R R RN RS AR R R R A A AL RS

Myﬁade

Showlind

LIST OFF

SYMBOL OFF

ABSADDR ON

INSTIME ON

GEMN ON

KEEP DOUBLE ;0bject code file
MCOPY DOUBLE .MAC sMacro file

START

Using GlobalData
Using StartData

JSR DoStartUp
; Define and display the window:
PHA ;Space for result
PHA
PushPtr MainWindow ;Pointer te window record

_Newlindow

Reference Section 157

PopLong WindowPtr
_InitCursor

EvtLoop PHA
Pushlord #$FFFF
PushPtr TaskRec
_TaskMaster

PLA

CMP #keyDownEvt

BEQ Exit

CHP fwlnContent

BNE EvtLoop

JSR DoClick

BRA EvtLoop
Exit JMP DoShutDown

END

s Check for a double-click.

;7 If 1t's a double click, display a

3 filled with the pen pattern.

DaClick START
Using GlobalData

PushLong MWindowPtr
_StartDrawing

PHA

PHA

_GetDblTime
PopLung DbiTime

PushPtr Where
_GlobalTolLocal

;Save pointer to window record

;All events

;Get result code

iKey-down?
1Yes, so branch

iin content region?
ine, so ignore

rectangle

iPrepare to draw in window
;Space for result
;get double-click time

sConvert mouse-down location
+ to window coordinates

;3 Calculate time since last mouse-up:

SEC

LDA When

SBC UpTime
STA TheGap
LDA When+2
SBC UpTime+2
STh TheGap+2

158 Event Management

; Check the mouse-up / mouse-down interval:

SEC

LDA DblTime

SBC TheGap

LDA DblTime+2

SBC TheGap+2

BCS Doubled ; branch if DblTime >= TheGap

; Wait until mouse button is released, then save time:

WaitForUp PHA ;space for result
PushWord #0 smouse button (#0)
_MWaitMouselp iWait for the following mouse-up event
PLA ;Get Boolean result
BNE WaitForUp ;jLoop until mouse 15 up
PHA ;space for result
PHA
_TickCount ;Get current tick count
PopLong UpTime 1Get the result
RTS

: We had a double-click, so draw a solid rectangle:

Doubled ANOP

CLC

LDA Where+h

STA OurBox+left
apc #30

STA OurBox+right
CLC

LDA Where+v

STA OurBox+top
ADC f10

STA OurBox+bottom

PushPtr OurBox

_PainiRect ;Draw the solid box

RTS
DblTime DS & ;:LOMG (double-click time)
UpTime DC 14'0! ;time of last mouse-up
TheGap Ds 4 jup-down time gap
OurBox Ds B ;jRectangle

END

Reference Section 159

COPY STANDARD.ASM
GlobalData DATA

; Window parameters:

WindewPtr DS 4 jPointer
MyTitle STR ' Double-Click Demo !
MainWindow DC [2'WindEnd-Mainkindow'

DC [*%41101110110100101°

DC 14'MyTitle!

DC 1410

DC I'0,0,0,0!

Dc 1410

DC ['o,0¢

DC 1'o,0¢

DC 1'0,0°

DC 110,00

DC 1'0,0!

DC 14'Q°

DC [2'0!

DC 14'0!

DC 140!

Dc 14101

DC 1'31,6,182,608"

DeC 14'-11"

DC I14'0?

WindEnd ANOP
:TaskMaster task record:

TaskRec ANOP

What DS 2 ;Event code

Message DS q sEvent result

When DS 4 1Ticks since startup
Where DS 4 ;Mouse location (gleobal)
Modifiers DS 2 1Status of modifier keys
TaskData DS 4 ;TaskMaster data
TaskMask DC I4'$00001FFF? ;TaskMaster handles all

END

160 Event Management

to window record

;Gize of table

;window frame type
;Pointer to window title
;refcon

;zoom rectangle

s;color table (0 = default)
:document offset

iheight ,width of data area
;height,width max window
:vert, horiz line movement
;yvert, horiz page movement
sinfo bar refcon

;info bar height

;frame defproc (0 = standard
;info bar defproc
jcontent defproc

iContent region rectangle
1At the front

iStorage (use MM)

CHAPTER 6

windows and
Graphics

This chapter, and the three that follow, examine ways to develop applications that
use the Gs's super high-resolution graphics screen as a Macintosh-like desktop. The
discussion will begin with an analysis of windows and then will move on to pull-
down menus, dialog and alert boxes, and finally desk accessories. The Gs has tool
sets for dealing with all these standard desktop features.

A window is an object on the desktop that acts as the private display screen for
a single document. The underlying document may be a series of lines of text or any
arbitrary graphic image, and it may be any size. If the underlying document is
larger than the portion of the window in which drawing operations appear {called
the content region), however, not all of it can be seen at once. To permit the viewing
of any portion of a large document, you can add bottom and right scroll controls to
a window. By adjusting these controls, it is possible to move any portion of the
document into the content region.

The cs handles windows in a flexible way. You can define as many windows as
memory permits and you can display them all on the screen at once. A window is
totally independent of any other window, so it can appear anywhere on the screen,
even though it may overlap or totally obscure another window. Some windows are
resizable and some may be dragged around the screen with the mouse.

By convention, the frontmost window is the active window, the one that will be
affected by drawing operations; other windows are said to be inactive. The active
window is drawn in a distinctive way, with a solid block in the title bar and
highlighted scroll controls. This distinguishes it from inactive windows, which show
only the outlines of the scroll controls and title bar.

This chapter covers how the Window Manager (tool set 14) can be used to create
various types of windows and to display them on the screen. Changing the size and
appearance of windows, moving windows around the screen, handling windows that
have scroll controls, and dealing with multiple windows are also discussed.

161

Of course, windows are not very useful unless you can display something in them.
At the end of the chapter, many of the text and graphics drawing functions in the
QuickDraw I tool set will be examined. QuickDraw II is responsible for handling
all tasks that involve drawing something on the super high-resolution graphics
screen. The Window Manager, for example, uses QuickDraw 11 to draw window
frames and special window icons.

THE SUPER HIGH-RESOLUTION GRAPHICS SCREEN

Before discussing the Window Manager, it is necessary to take a close look at the
characteristics of the super high-resolution graphics video display mode. Once you
understand how it works, you will be better able to use many of the Window
Manager and QuickDraw II functions, especially the ones that permit you to ma-
nipulate colors.

As shown in figure 6-1, the video display buffer for the super high-resolution
graphics mode is located from $2000 to $9CFF in bank $E1 of memory. The area
from $9D00 to $9DFF holds 200 scanline control bytes and the area from $9E00 to
$9FFF holds 16 color palettes. The area from $2000 to $9FFF in bank $01 shadows
to the same area in bank SE1 if shadowing is enabled. (QuickDraw II does not
enable shadowing; it accesses bank $E1 video locations directly.)

Two bits in the New-Video register at $E0C029 control the characteristics of the
super high-resolution screen (see figure 6-2).

To turn on the super high-resolution display mode, set bit 7 of the New-Video
register to 1. Bit 6 must also be set so there will be a linear relationship between
the display buffer and the position of a pixel on the screen. You want the linear
relationship because screen drawing calculations can be done more quickly.
QuickDraw II sets both bits for you when you call the QDStartup function.

When you leave super high-resolution mode, store a $01 in the New-Video
register. This ensures that linearization is off, as normal 1le-style applications expect
this. (It also permits main/auxiliary memory switching just like on a Ile.) QuickDraw
does-this when you call QDShutDown.

Pixel dimensions of the graphics screen are either 320 wide by 200 high or 640
by 200. Each line is defined by a group of 160 consecutive bytes in the video display
buffer. With the linear memory map enabled, this means that the bytes defining a
line begin at an offset (from $2000) that is 160 times the line number. The line
numbers range from 0 to 199,

Each pixel in a line is associated with either four bits (320 mode) or two bits (640
mode) in the display buffer. These bits define the color of the pixel. The assignment
of pixels to bits for a byte in the display buffer is shown in figure 6-3.

When this scheme is used, a pixel can be one of sixteen colors in 320 mode or
one of four. colors in 640 mode. As will be shown below, the color definitions are

162 Windows and Graphics

Figure 6-1. The Super High-resolution Graphics Display Buffer

$A000
Color Palettes
i 32-byte table
$9E00 (sixteen 32-byte tables)
} Scanline Control Bytes
$9D00 | (first 200 bytes)
i Video RAM
> -t (160 bytes/scan line,
200 scan lines)
$2000

Bank $E1

NOTE: Locations $2000—$9FFF in bank 301 shadow to this bank if shadowing is enabled.

stored in a palette, or color table, that defines sixteen colors. In 640 mode, only
four of these colors are available to a given pixel; the four that are available depend
on what column the pixel is in, as indicated in the figure.

The pixel width and color palette for a given horizontal line are controlled by its
scanline control byte (SCB). The SCBs for the screen are stored, in line order, in a
200-byte table beginning at $9D00 in bank SE1. The format of an SCB is shown in
figure 6.

When the fill mode bit of an SCB is on, color number 0 in the palette becomes
inactive. When a pixel is assigned a color number of 0, the pixel takes on the same
color as the previous non-zero pixel in the line.

The Super High-resolution Graphics Screen 163

Figure 6-2. The New-video Register

7!16|5|a4|3|2([1]0 $EOCO029

I— (must be 1; enables

bank latch)

1 = inhibit color in double high-res
0 = full color in double high-res
|1 =1linear video map from $2000-$9FFF (bank $E1)
0 = standard video map from $2000-$9FFF

= turn on super high-resolution screen display
0 = turn off super high-resolution screen display

The interrupt bit in the SCB is normally off. You may want to enable interrupts so
that vou can update the video buffer during video retrace operations; this eliminates
flickering in animation sequences. You could also change the color palettes during
an interrupt to effectively increase the number of different colors visible on the
sCreen.

A palette, or color table, is a group of sixteen words, each deseribing a particular
color, as follows:

7 3 Q 7 3 0

[zero] Red Green Blue

high-order byte low-order byte

As vou can see, the red, green, and blue components of the color word are each 4
bits long. This means you can choose from 4,096 different colors.

Table 6-1 shows the standard color tables QuickDraw II uses for each of the
sixteen 16-color palettes when it starts up in the 640-by-200 and the 320-by-200
mode.

164 Windows and Graphics

Figure 6=3. Super High-resolution Color Bits
320 mode:
T 3 1)

I | !
left pixel
i

1 1

T T

right pixel

i !

J

-

] T—— color number (0 to 15)

color number (0 to 15)

640 mode:

7 5 3 1
1 I 1 T

1 | 1 1
L

| SR right pixel

(selects from colors 4 to 7
in the palette)

middle-right pixel
(selects fromcolors O to 3
in the palette)

middle-left pixel
(selects from colors 12 to 15
in the palette)

left pixel
(selects from colors B to 11
in the palette)

The Super High-resolution Graphics Screen 165

Figure 6-4. The Format of a Scanline Control Byte

1|65 |4)1312|1]0

T—color palette number

(must be 0) (0 to 15)

| 1 = fill mode is active
0 = fill mode is inactive

1
0

generate interrupt on horizontal retrace
no interrupts

n

1 =line is 640 pixels wide
0 = line is 320 pixels wide

You can return a copy of this table by pushing a pointer to a sixteen-word area and
calling the QuickDraw InitColorTable function.

In 640 mode, QuickDraw expects color numbers from 0 to 3 only. In this situation,
a color number is really an index into the group of four colors permitted for the
pixel column in question. Notice that the four groups of four colors in 640 mode
are different—two of the groups use red and green as the second and third colors
and two use blue and vellow. This means that when a horizontal line in color $02
is drawn, alternate green and vellow pixels are drawn on the screen; they are so
close together, however, that the line appears to be one solid color (lime green). An
alternate red/green line looks purple. The creation of a new color by placing different
colors close to one another is called dithering. By changing the 640-mode palette
and taking advantage of the dithering phenomenon, you can create many other
colors.

Any entry in any palette table can be changed at any time using QuickDraw’s
SetColorEntry function:

PushWord #0 ;Palette number (0 to 15)
PushMord #8B ;Color number (0 to 15)
PushWerd NewColor ;The new color value
_SetColorEntry

166 Windows and Graphics

Table 6-1: The Standard Color Tables Used by QuickDraw

Color o 320-by-200 Mode 640-by-200 Mode
Number Value Color Value ~ Color
0 50000 black $0000 black

1 80777 dark gray $0F00 red
2 $0841 brown $00F0 green
3 $072C purple $OFFF white
4 $000F blue $0000 black
5 $0080 dark green S000F blue
6 SOF70 orange 30FF0 vellow
T $0D00 red $0FFF white
8 $0FA9 Hesh $0000 black
9 $0FFO vellow SOF00 red
10 S00E0 green SO0F0 green
11 S04DF light blue SOFFF white
12 SO0DAF lilac $0000 black
13 $078F periwinkle blue S000F blue
14 $0CCC light gray $0FFO vellow
15 30FFF white SOFFF white

If you prefer, you can redefine the entire table at once by passing a palette number
and a pointer to the palette definition to SetColorTable.

There are also QuickDraw functions for changing the standard scanline control
bytes: SetSCB and SetAlISCBs. Use SetSCB to change the SCB for any particular
line, or SetAllSCBs to assign the same SCB to all lines at once,

Here is how to use SetSCB:

PushWord #188 sLine number
PushWord #882 sNew SCH
_SetSCB

In this example, line #1588 becomes 640 pixels wide and is associated with palette
#2.

Because the SetAllSCBs function affects all lines, it requires only one parameter,
the new SCB value.

The Super High-resolution Graphics Sereen 167

Figure 6-5. The Structure of a Window

elowsas b s sy
O]]

_InsertMenu line up
e up

Pushiord #1 ”

_FixAppleMenu ;Rdd DRs to Apple menu A thumb

PHR o

_FixMenuBar :Adjust size of menus/menu bar

PLA

_DrawMenuBar :Display menu bar ool

_InitCursor :Turn on the arrow cursor

; Define and display the window:

Bine chiwny

Q .
R I /

wodumm eft thuianl viitent region st rigcht wollumn crovw o

righi

INTRODUCING THE WINDOW

As shown in figure 6-5, a standard window is made up of a rectangular content
region in which the window’s underlving document is drawn. Surrounding the
content region is a window frame in which any window controls defined for the
window appear. Methods for assigning window controls to a window are covered
later in this chapter. The window in figure 6-5 is “fully-loaded”; its frame contains
every type of control supported by the Window Manager. In practice, most windows
use only a subset of these controls.

Just above the content region of this window is the information bar. Most
windows do not have an information bar; if one is defined, it usuallv contains a
subtitle for the window. The main title appears in a title bar above the information
bar. The title bar also serves as the mechanism for dragging a window around the

168 Windows and Graphics

screen. To drag a window, move the mouse cursor into the title bar, press the
mouse button and then move the mouse while holding the button down; to “drop”
the window into place, release the mouse button.

Two small rectangles, the close box and zeom box, appear at the left and right
sides of the title bar, respectivelv. (You must include a title bar if you want a close
box or a zoom box.) Although these boxes are inside the rectangle describing the
title bar, they are not actually part of the title bar itself. The close box is what a
user clicks to remove a window from the sereen. The zoom box lets a user quickly
resize a window: when it is clicked for the first time, the window expands to cover
the entire screen (or whatever size is specified by the programmer); when it is
clicked again, it returns to its previous size,

A user can also resize a window by dragging in the grow box region of a window.
When it is dragged, an outline of the resized window (with the top-left corner fixed
in place) follows the mouse until the button is released.

The scroll bars permit a user to view any portion of a window's underlving
document. When vou click the mouse in a seroll arrow or a page region, or when
vou drag a thumb, whatever is in the window scrolls and a new portion of the
document becomes visible. Consider how the right (vertical) seroll bar works. for
example. When vou click the up or down arrow, the document serolls up or down
by a fixed number of pixel lines corresponding to one line of whatever is in the
document. For a text document, this number is usually set to the line spacing.
Clicks in the page regions usually seroll the document by the entire height of the
content region, or the entire height less one line. Finally, you can quickly bring
any portion of the document into view by dragging the scroll bar's thumb up or
down in the seroll bar's elevator shaft. Bottom (horizontal) seroll bars behave in
similar ways, except that they control horizontal movement within the document.

The size of the thumb reflects how much of the document is being shown in the
content region. Again, consider a right scroll bar. The ratio of the height of the
thumb to the height of the scroll bar is the same as the ratio of the height of the
content region to the height of the document. 1f the entire height of the document
fits in the content region, the thumb occupies the entire seroll bar.

The position of the thumb within the scroll bar tells you what portion of the
document is in the content region. The closer the thumb is to the top of a right
scroll bar (or to the left of a bottom scroll bar), for example, the closer you are to
the top edge (or left edge) of the document. In effect, the ratio of the size of a page
region in a scroll bar to the size of the bar is the same as the ratio of the size of the
relevant off-screen portion of a window (the portion above the top. bottom, left, or
right, as the case may be) to the size of the entire window.

The window behavior just deseribed does not happen automatically. It is up to
the programmer to write the application in such a way that standard actions occur
when window activity is detected.

Introducing the Window 169

Figure 6-6. The Format of the PortSCB Byte

716|514 3(2(1]0 PortSCB

£ v

[color palette number
always 0 (0 to 15)

1 = 640200 mode
0 = 320%x200 mode

THE WINDOW RECORD

When vou first define a window (with the NewWindow function), a window record
is created that the Window Manager uses to keep track of window parameters. One
important field in a window record is a QuickDraw data structure called a GrafPort.
A GrafPort completely describes a drawing environment: the position of the drawing
area, the attributes of the drawing pen, the character font to be used for drawing
text, the typeface and color, the background pattern, and so on.

The first part of a GrafPort is called the PortInfo field. It describes the position
and size of a rectangular area in memory within which an active drawing area is
defined. In most cases, this area will be inside the super high-resolution video buffer
so that vou can see the effect of drawing operations.

PortInfo is a data structure of type LocInfo and is made up of the following five

fields:

» PortSCB (bvte)

» [Reserved] (byte)

= PointerToPixellmage (long)

» Width (word)

* BoundsRect (rectangle)
PortSCB defines the color palette associated with the GrafPort and the bit size of
the pixels in the drawing area. Its meaning is explained in figure 6-6.

Although vou can associate one of sixteen color palettes with each line in the
drawing area (which is usually the super high-resolution display buffer), QuickDraw

170 Windows and Graphics

initially assigns the same palette (palette #0) to each line. (The structure of a palette
was described earlier in this chapter.)

PointerToPixellmage contains the address of the top left-hand corner of a rectan-
gular desktop in which the active drawing area of the GrafPort is located. For the
super high-resolution screen, this is location $E120000. Width is the number of
bytes required to define a line of pixels extending from the left edge of the drawing
area to the right edge; it is 160 for the super high-resolution screen.

The precise width of the drawing area is defined by the boundary rectangle,
BoundsRect. Like any QuickDraw rectangle, this one is defined by four integers
representing the positions of the top, left, bottom, and right sides of the rectangle.

Another important field in a window record is PortRect, which is also a rectangle.
PortRect describes the portion of BoundsRect to which GrafPort drawing operations
will be confined. If part of PortRect lies outside BoundsRect, drawing will be
restricted to the portion inside BoundsRect. For a window, this is the content
region,

To determine the current value of PortRect, use GetPortRect:

PushPtr WindRect :Pointer to rectangle
_GetPortRect sRead the value of PortRect
RTS

WindRect D5 B 1A rectangle is 4 words (8 byles)

PortRect also defines a local coordinate system for the GrafPort, a system used by
all drawing functions affecting the GrafPort. In this system, the origin of the
GrafPort—its top left-hand corner—has the coordinates given by the first two words
of the PortRect. These coordinates are anchored to this corner and do not change
even if PortRect is moved from place to place within the area of memory described
by the boundary rectangle (i.e., the desktop).

If you do want to change the coordinates of the origin, perhaps to the convenient
(0,0) standard or to the scroll position within the document, use the SetOrigin
function:

PushlWord MewX :new horizontal coordinate
PushWord NewY :new vertical coordinate
_SetOrigin

SetOrigin assigns the specified values to the top left corner of PortRect. The bottom
right coordinate of PortRect is adjusted accordingly to maintain the size of PortRect.
BoundsRect is also adjusted by SetOrigin to keep it at the same relative position to
PortRect.

The other standard coordinate system, the global coordinate system, assigns the
top left-hand corner of the total drawing area given by BoundsRect (usually the
super high-resolution screen) to the (0,0) coordinate. This is the coordinate system

The Window Record 171

used by a point in the Where field of an event record, for example. Use the
GlobalToLocal function to convert a global coordinate to a local coordinate:

PushPtr ThePoint ;:Pointer to global coordinate
_GlobalTolacal

To convert in the opposite direction, from local to global, use LocalToGlobal:

PushPtr ThePoint :Pointer to local coordinate
_LocalTeGlobal

Use LocalToGlobal when you have to compare points expressed in the local coor-
dinates of different GrafPorts. Converting all the points to the same coordinate
system will enable you to make meaningful comparisons.

The conceptual drawing space for QuickDraw operations is a square grid that is
32K pixels wide and 32K pixels high. The coordinate origin is in the center, so the
coordinate limits for the horizontal and vertical axes range from -16K to +16K. If
you try to draw outside this range, the system will behave unpredictably.

Keep in mind that even when you draw inside the absolute boundaries only the
bits for pixels falling within the content region of the window (and not obscured by
other windows) will be transferred to the memory area associated with the content
region.

WINDOW MANAGER START-UP AND SHUT-DOWN OPERATIONS

Because the Window Manager functions use QuickDraw II functions to perform
screen-drawing operations, you must initialize QuickDraw before initializing the
Window Manager. To do this, use the following calling sequence:

PushWord DPAddr ;Address of 3-page area in bank $00
PushWord #3%80 1 $80 = B40x200 / $00 = 320x200
PushWord #0 :MaxlWidth (0 = screen width)
PushWord UserlD sID returned by MMStartup
_GDStartup

DPAddr is the two-byte address of a three-page area in bank $00 that QuickDraw
uses for direct page space. This space can be allocated with the Memory Manager.
The second parameter pushed, MasterSCB, is the scanline control byte QuickDraw
will use for each of the 200 lines on the screen. It is normally $80 for 640-by-200
mode or $00 for 320-by-200 mode. The next word pushed is MaxWidth, the width
(in bytes) of the largest pixel area in which QuickDraw will be asked to draw; a
value of 0 sets MaxWidth to the screen width (160 bytes). The last parameter is the
program ID that was returned by MMStartup.
To initialize the Window Manager itself, use WindStartup:

172 Windows and Graphics

PushWord UserlD :1D returned by MMStartup
_WindStartup

WindStartup’s only parameter, UserlD, is the 1D number returned by MMStartup.

WindStartup clears the Window Manager’s internal list of windows and defines
the entire super high-resolution screen as the Window Manager's desktop. It does
not draw the desktop itself; for that use RefreshDesktop:

PushLong #0 ;0 = entire screen
_RefreshDesktop

RefreshDesktop uses a default background pattern and color to draw the desktop.

When you are all through with the Window Manager at the end of a program,
call the WindShutDown function to release the data structures and memory areas
it uses, WindShutDown requires no parameters.

CREATING A WINDOW

To create a new window, use NewWindow. It builds a window record data structure
from a specified parameter list and adds the record to an internal list of window
records maintained by the Window Manager. It may or may not display the window
on the screen, depending on how you initially define the WFrame parameter (see
below). If vou define it as invisible, you can display it by passing the window pointer
to the ShowWindow function.

NewWindow requires only one parameter, a pointer to a parameter list describing
the properties of the window. It returns a pointer to the window record (or 0 if
space for the window record could not be allocated). Here is how to use New-
Window:

PHA ;Space for result (long)
PHA

PushPtr WindParms :Pointer to parameter list
_NewWindow

PopLong WindowPtr ;Save window pointer

NewWindow Parameters

The parameter list referred to in the call to NewWindow contains nineteen param-
eters that describe the appearance of the window. Some parameters are anly for the
use of the TaskMaster function, which retrieves events and handles mouse-down
activity in a window. The subroutine in listing 6-1 shows how to define the window
shown in figure 6-5.

A description of each of the parameters, in order of appearance in the parameter
list, follows:

Creating a Window 173

Figure 6-7. The Window Frame Bit Vector (wFrame) Used by NewWindow

[15|14||3|t2|n||u]9[s]‘7[‘5|f[4|3[2| 1]o0]

F_Title J 11111 1 LF_Hilited
F_Close F_Zoomed
F_Alert F_Allocated
F_Rscr] ——— ——F_Ctri_Tie
F_BScrl F_Info
F_Grow F_Vis
F_Flex F_QContent
F_Zoom F_Move

paramlength (word). This is the number of bytes in the window parameter table.

wFrame (word). This is a bit vector describing the appearance of the window
frame (see figure 6-7). It lets you create windows with or without the following
window controls in the frame:

» Title bar

» Close box

* Zoom box

= Right scroll bar

= Bottom scroll bar

* Grow box

+ Information bar

You can also use it to indicate whether the window is movable (can be dragged
around the screen), at its zoomed size, or visible. Additional bits reHect whether

174 Windows and Graphics

the window was created by NewWindow, whether the controls are tied to the
window, and whether a mouse click that activates a window is to be returned to the
application.

With two exceptions, each control is independent of any other. The first exception
is the grow box—if its bit is set, the right scroll bar or bottom scroll bar bit must
also be set. The second exception relates to the title bar—if the close box or zoom
box bits are set, the title bar bit must be set as well. Although it is not required, if
you define a window with a zoom box, you should also define a grow box so that

the window can be made any convenient size.

A common window frame value is %1101111111100101 ($DFE5). This defines a
visible window that has a title bar, close box, seroll bars, grow box, and a zoom box.
The window is also draggable.

Here is the meaning of each bit in the window frame bit vector:

bit 0 1 = Window is highlighted (active)

F_HILITED 0 = Window is unhighlighted (inactive)
This bit is used by the Window Manager after the window is
defined; its value is ignored by NewWindow.

bit 1 1 = Window is zoomed out

F_ZOOMED 0 = Window is zoomed in
If the window is zoomed out, it will zoom in when the zoom
box is clicked next. If it is zoomed in, it will zoom out.

bit 2 1 = Window record was allocated by NewWindow

F_ALLOCATED

0 = Window record was allocated by the application
If this bit is set (the usual case), the window record is auto-
matically disposed of when CloseWindow is called.

bit 3 1 = Controls in the window are not tied to the active/inactive

F_CTRL_TIE state of the window
0 = Controls are tied to the state of the window
The usual value for this bit is 0. This causes the seroll controls
to be dimmed when the window is deactivated.

bit 4 1 = The window has an information bar

F_INFO 0 = The window does not have an information bar
If this bit is set, the winfoDefProc field of the window record
must point to an information bar drawing procedure. The field
must not be zero.

bit 5 1 = The window is visible

F_VIS 0 = The window is invisible

If this bit is 0, the window will not appear on the screen after
NewWindow is called. Use ShowWindow to make the window
visible.

Creating a Window 175

bit 6
F_QCONTENT

bit 7
F_MOVE

bit 8
F_ZOOM

bit 9
F_FLEX

bit 10
F_GROW

bit 11
F_BSCRL
bit 12
F_RSCRL
bit 13
F_ALERT

bit 14
F_CLOSE

1 = TaskMaster handles a mouse-down event in an inactive
window by activating the window and retaining the event
for the application

0 = TaskMaster returns a null event to the application after
handling a mouse-down event to activate a window

If this bit is set to 1, the user does not have to click the mouse

twice to select something in an inactive window.

1 = The window can be dragged by its title bar

0 = The window cannot be dragged

If a window has a title bar, this bit should be set to 1 so that
the user is free to position it on the screen wherever he likes.

1 = The window has a zoom box

00 = The window does not have a zoom box

If this bit is set, bit 15 (F_TITLE) must also be set so that the
window will have a title har.

1 = The origin of the window does not change when the
window is zoom or resized

0 = The origin of the window moves up and to the right as
the window grows beyond the limits of its underlying
data

For most applications, this bit should be set to 1.

1 = The window has a grow box

0 = The window does not have a grow box

A window with a grow box should also have a right or a bottom
scroll bar, A zoom box is also recommended but not necessary.

1 = The window has a bottom scroll bar

0 = The window does not have a bottom scroll bar
1 = The window has a right scroll bar
0 = The window does not have a right scroll bar

1 = The window uses an alert box window frame

0 = The window uses a standard window frame

You will usually clear this bit to 0 for windows defined with
NewWindow. Alert boxes are created using the Dialog Man-
ager. If the bit is 1, F_GROW, F_CLOSE, F_INFO, F_
TITLE, F_BSCRL, and F_RSCRL must all be 0.

1 = The window has a close box

0 = The window does not have a close box

If this bit is set, bit 15 (F_TITLE) must also be set so that the
window will have a title bar.

176 Windows and Graphics

bit 15 1 = The window has a title bar
F_TITLE 0 = The window does not have a title bar

wTitle (long). This is a pointer to the title of the window. The title is a string of
ASClII-encoded characters preceded by a length byte. To isolate the title from the
background pattern of the title bar include a space character at the beginning and
end of the title string.

wRefCon (long). This is a reference constant defined by the application. 1t is not
used by any Window Manager functions. It can hold anything you like, such as a
pointer or handle to a data area you would like to associate with the window.

wZoom (rectangle). This rectangle describes the size of the content region when
the window is zoomed by clicking in its zoom box. Like those of any rectangle, this
rectangle’s coordinates are in top, left, bottom, right (TLBR) order. If you specify a
zoom rectangle of (0,0,0,0), a default rectangle that describes the entire screen
(except the menu bar) is used.

wColor (long). This is a pointer to the window frame's color table. If this pointer
is zero, a default color table is used.

wOrigin (point). This is the position in the window's underlying document that
corresponds to the top left-hand corner of the content region. This value is used to
compute the positions of the thumbs in the right and bottom scroll bars. TaskMaster
updates this value in the window record when a scrolling operation occurs.
TaskMaster also uses SetOrigin to move the origin of the content region to this
point before calling the routine to update the window (see below); the origin is reset
to (0,0) on return from the update routine. If you draw inside a window outside of
the update subroutine, first call StartDrawing to adjust the origin properly; use
SetOrigin to return the origin to (0,0) after drawing,

wData (long). This is the height (low word) and width (high word) of the entire
document, measured in pixels. This data is needed to draw the right and bottom
scroll bars properly. Set the height or width to 0 if you are not using right or bottom
scroll controls, respectively.

wMax (long). This is the maximum allowable height (low word) and width (high
word) of the content region when resizing the window. TaskMaster passes this value
to GrowWindow when a mouse-down event occurs in the window’s grow box. Set
it to 0 if you want to use the default value, which is the height and width of the
desktop.

Creating @ Window 177

wSeroll (long). This is the number of pixels to seroll the content region when the
up or down arrow in the right scroll bar is selected (low word) and the number of
pixels to scroll when the left or right arrow in the bottom scroll bar is selected (high
word). These values are used by TaskMaster to handle activity in a seroll bar.

wPage (long) This is the number of pixels to seroll the content region when the
up or down page region in the right scroll bar is selected (low word) and the number
of pixels to scroll when the left or right page region in the bottom scroll bar is
selected (high word). These values are used by TaskMaster to handle activity in a
seroll bar.,

winfoRefCon (long). This is the reference constant passed to the information bar
draw routine. This constant can be anvthing the application likes. It often holds a
pointer to a line of text to be drawn in the information bar.

winfoHeight (word). This is the height of the information bar,

wFrameDefProc (long). This is a pointer to the window's definition procedure.
Set this to 0 for a standard document window.

winfoDefProc (long). This is the address of the routine TaskMaster calls to draw
the contents of the information bar. Such a routine must be installed if the wFrame
byte indicates that the window has an information bar; if this routine is not installed,
the system will crash when the window is drawn. The Window Manager pushes
three parameters on the stack before calling the information bar subroutine with a
JSL instruction: a pointer to the enclosing rectangle for the information bar, the
wlnfoRefCon value, and a pointer to the window. These parameters must be re-
moved from the stack before the subroutine ends with an RTL instruction. Note
that before the routine tries to access the application’s direct page or data space, it
should set the direct page and data bank registers accordingly (after saving the ones
passed to the routine). On exit, the initial values for these registers must be restored.

wContDefProc (long). This is the address of the routine TaskMaster calls to draw
the window’s content region in response to an update event. Before TaskMaster
calls the routine, it sets the local coordinates of the top left corner of the content
region to the positions indicated by the values of the seroll controls (if applicable)
and calls BeginUpdate. On entry, the direct page and data bank registers may not
be the same as when TaskMaster was called, so the routine will have to change

178 Windows and Graphics

them to access the application’s direct page and data areas. The routine must end
with an RTL instruction. If wContDefProc is 0, or if TaskMaster is not used, the
application itself must trap update events and handle them in an appropriate way.

wPosition (rectangle). This rectangle, given in global coordinates, describes the
initial position and size of the window's content region.

wPlane (long). This is a pointer to the window behind which this window is to
appear (long). 1f the pointer is -1, the window appears on top: if 0, the window
appears at the bottom.

wStorage (long). This is the address of the memory area to use for the window
record (long). Set it to 0 if NewWindow is to allocate the memory space for you by
calling NewHandle (the usual case).

THE INFORMATION BAR PROCEDURE

The general structure of an information bar procedure is shown in listing 6-2. In
this particular example, a line of text is centered and drawn in the information bar.
A pointer to the text string is in the winfoRefCon parameter.

UPDATING A WINDOW

The wContDefProc (update) subroutine referred to in the NewWindow parameter
list is important because it is responsible for ensuring that newly exposed portions
of a window are properly filled in. Without such a subroutine, portions of the
window will be erased when other windows are moved from in front of it or when
the window is enlarged. The TextReader program shown later in this chapter is an
example of how to write such a subroutine for a window containing lines of text.

If wContDefProc is 0, update events are passed through to the application for
handling. (You should clear wContDefProc when designing New Desk Accessories
because you cannot be sure that TaskMaster is being used by the main application;
see chapter 9.) The update handler is similar to a wContDefProc subroutine but
must include some extra window management chores. To handle updates, first call
Begin Update:

PushLong WindowPtr :Pointer to window
_BeginUpdate

BeginUpdate saves the window's current visible region (which describes the portion
of the window's content region vou can actually see on the screen), sets the new
visible region to the intersection of the old visible region and the update region,
and then empties the update region.

The Information Bar Procedure 179

After calling BeginUpdate, pass the window pointer to StartDrawing to select
the window for drawing activity and to align the origin of the content region to the
position reflected by the values of the thumbs in the scroll controls. This aligns the
active portion of the document with the window’s content region. Then redraw the
portion of the window’s document that appears within the new visible region. To
do this, it is actually easier to redraw the entire content region of the window,
because doing so avoids the problem of determining how to draw just an arbitrary
portion of it. To do this, of course, you must always keep a record of exactly what
is in the window. This can be the most difficult part of developing an application.

After the screen has been redrawn, call EndUpdate to restore the original visible
region:

PushLong WindowPtr sPointer to window
_EndUpdate

Next, set the origin of the window back to (0,0) with SetOrigin:

PushWord #0
PushWord #0
_Setﬂrlg;n

The Window Manager does not work properly if you do not return the origin to
(0,0) after updating the window.

CHANGING THE PROPERTIES OF A WINDOW

After vou have created a window with NewWindow, you will need to change some,
of that window's properties in certain situations. For instance, you should alter the
DataSize parameter to reflect a change in the size of the window’s underlying
document so that the scroll controls can be redrawn in proper proportion. To change
such properties, you must update fields in the window record created from the
NewWindow's parameter list, not in the parameter list itself. You do this with a
group of Set functions, one for each of the named fields in the parameter list.

Table 6-2 contains a list of the relevant Set functions. When you change a
parameter, the appearance of a window may not immediately change to reflect the
value of the new parameter. To force the window to be redrawn, first hide the
window and then make it visible again:

PushLong WindowPtr

_HideWindow ;:Remove window from screen
PushLong WindowPtr
_Showlindow iMake the window visible

180 Windows and Graphics

Table 6-2: Functions for Setting Window Parameters

Function Description

SetWFrame Sets the window frame bit vector

SetWTitle Sets the title for the window

SetWRefCon Sets the reference constant for the window
SetFullRect Sets the zoom rectangle for the window
SetFrameColor Sets the color table to be used with the window
SetContentOrigin Sets the horizontal and vertical offsets to the

SetDataSize

SetMaxGrow

SetScroll

SetPage

SetlnfoRefCon

SetDefProc

SetInfoDraw

SetContentDraw

data area corresponding to the top left-hand
corner of the window

Sets the width and height of the data area for a
window

Sets the maximum width and height for a
window that can be resized

Sets the number of pixels to scroll one line
horizontally and the number of pixels to scroll
one line vertically

Sets the number of pixels to seroll one page
horizontally and the number of pixels to scroll
one page vertically

Sets the parameter passed to the information
bar drawing procedure

Sets the address of the window definition
procedure.

Sets the address of the information bar drawing
procedure

Sets the address of the window’s update
procedure

If there is more than one window on the screen, call SelectWindow after the code
sequence above to make this window the active one.

There are also Get functions corresponding to each Set function. Use them to
determine the current values of the window parameters. With some exceptions,
Get functions are all called in the same general way:

Changing the Properties of a Window 151

1. Push space for result (word or long)
2. Push a pointer to the window record (long)
3. Call the Get function

4. Pop the result (the window parameter)

For a function dealing with strings, the result is a pointer to the string.

The exceptions relate to those functions dealing with rectangles, strings, and
other data structures longer than four bytes. Instead of pushing space for a result,
push a pointer to a space for the rectangle or string. The function returns the result
in this space, so you do not have to pop a result from the stack.

REMOVING A WINDOW FROM THE DESKTOP

When you are finished with a window for good, use CloseWindow to free up the
space reserved for it (if it was created with NewWindow), remove it from the window
list, and erase it from the screen:

PushlLong WindowPtr ;Pointer to window
_CloseWindow

CloseWindow causes the window in the plane just below the window that was closed
(if any) to be highlighted. It also generates an activate event for this window. Once
a window is closed, you cannot use it again unless you redefine it with NewWindow.

If you simply want to erase a window from the screen without destroying its
record, use HideWindow to make it invisible:

PushLong WindowPtr ;Pointer to window
_HideWindow

To make the window visible again, pass its pointer to the ShowWindow function.
You will also use ShowWindow to display a window for the first time if the visible
bit in the window frame word is 0 when you call NewWindow.

Be aware that calling ShowWindow will not make the window active if there are
other windows already on the screen. Use SelectWindow for that:

PushlLong MWindowPFtr ;Pointer to window
_SelectWindow ;activate the window

SelectWindow removes the highlighting from the previously active window, brings
the specified window to the front of the screen and highlights it, and then generates
the appropriate activate events,

You will use SelectWindow more often to activate an inactive, but visible, window
when GetNextEvent returns a mouse-down event that FindWindow says took place
inside an inactive window. If you are using a TaskMaster—rather than a Get-

182 Windows and Graphics

NextEvent—event loop, you will not actually have to call SelectWindow, because
TaskMaster calls it for vou.

To determine if the window in which an event took place is the active (frontmost)
window, use FrontWindow:

PHA ;Space for result

PHA

_FrontWindow

PopLong CurrentWindow ;Pop the window pointer

If the result, CurrentWindow, matches the value of the window pointer that
FindWindow returns, the activity did take place in the active window.

HANDLING MOUSE-DOWN ACTIVITY IN WINDOWS

The user-interface guidelines define the actions that should take place when various
parts of a window are clicked. For example, a click in an inactive window should
activate the window and bring it to the front of the screen. The Window Manager's
TaskMaster function (introduced in chapter 5) performs many of the standard actions
for you, so use it unless you need to deal with a mouse-down event in a different
way. This section describes exactly how TaskMaster reacts to various events so that
if you want to handle them on your own, you will know roughly what to do.

Here is a subroutine you could call to get a TaskMaster event to work with; the
subroutine returns an event code in the accumulator:

EventLoop PHA ;Space for result
PushWord #$FFFF sAllow all events
PushPtr TaskRecord ;Pointer to task record
_TaskMaster

PLA ;Get event code
BEQ EventlLoop jLoop if null event
RTS

TaskRecord ANOP

what DS 2

message DS 4

when DS 4

where DS 4

modifiers DS 2

TaskData DS 4 ;TaskMaster data
TaskMask DC 14'$00001FFF!' ;TaskMaster handles all

When TaskMaster detects a mouse-down event, it calls the FindWindow function
to determine in which part of a window the event occurred. The location codes
FindWindow can return are shown in table 6-3.

If FindWindow returns a 30000 event code (wNoHit), the event should be
ignored.

Handling Mouse-down Activity in Windows 183

Table 6-3: Location Codes Returned by FindWindow

Symbolic

Name Code Meaning

wNoHit 50000 Not in a window at all

wlnDesk $0010 In the desktop

winMenuBar $0011 In the system menu bar
winContent %0013 In the window's content region
winDrag 50014 In the window’s drag region
wiInGrow 30015 In the window's size box
winGoAway %0016 In the window's close box
winZoom $0017 In the window’s zoom box
wlnlnfo $0018 In the window’s information bar
wlnSpecial 0019 Special menu item selected (*)
winDeskItem $001A Desk accessory item selected (*)
winFrame 30018 In any other part of the window
winSysWindow B8xxx In desk accessory window

NOTE: In the instances marked by an asterisk, FindWindow does not actually return these codes: they
are returned by TaskMaster if TaskMaster is not configured to deal with desk accessories selections
iwlnDeskItem) or if standard editing/closing menu items are used (wlnSpecial],

Note that if the high-order bit of the location code is set to 1 (that is, the code is of
the form $8xxx), the event occurred in a desk accessory. TaskMaster simply passes
the event to the accessory by calling SystemClick. It then exits and returns a null
event so that the application will not try to handle the event.

Other result codes refer to application windows and are handled in different ways
by TaskMaster. These codes are described below.

winMenuBar. TaskMaster handles activity in the menu bar by calling MenuSelect
to determine which menu item was selected. See chapter 7 for more information
on how TaskMaster behaves beyond this stage. After processing, TaskMaster exits
and returns a null event code, winMenuBar, winDeskltem, or winSpecial.

winContent. 1f the window is not active, TaskMaster calls SelectWindow to make
it active, exits, and returns a null event code. If it is active, TaskMaster puts a

184 Windows and Graphics

pointer to the window in TaskData, exits, and returns the winContent code. It is
then up to the application to handle the event in an appropriate way, by repositioning
a cursor in a line of text or highlighting an icon, for example. If the interior of the
window has controls like buttons and check boxes, you should use the Control
Manager to see if they were clicked. Windows with controls are better handled by
the Dialog Manager, as chapter 8 will discuss.

winDrag. If the window is not active and the Open-Apple key is not down,
TaskMaster calls SelectWindow to activate the window. It then calls DragWindow,
which causes a dotted outline of the window to move around the screen as the
mouse moves; when the button is released, the sereen is redrawn at its new position.
TaskMaster then exits and returns a null event code. If the window is active, or the
Open-Apple key is down, SelectWindow is not called first.

winGrow. TaskMaster calls GrowWindow, which causes a dotted outline of the
window, anchored in the top left corner, to move in concert with the mouse.
GrowWindow returns the new dimensions of the window, which TaskMaster passes
to SizeWindow to redraw the window. TaskMaster then exits and returns a null
event code.

wInGoAway. TaskMaster calls TrackGoAway to track the movement of the mouse
until the button is released. If the button is released outside of the close box,
TaskMaster exits and returns a null event code; otherwise, it puts the window
pointer in TaskData, exits, and returns a wInGoAway event code. The application
can then either permanently dispose of the window by calling CloseWindow or just
temporarily remove it from the screen with HideWindow.

winZoom. TaskMaster calls TrackZoom to track the movement of the mouse until
the button is released. If the button is released outside of the zoom box, TaskMaster
exits and returns a null event code. Otherwise, it calls ZoomWindow to resize the
window to its zoomed size or, if the window has already been zoomed, to its
prezoomed size; TaskMaster then exits and returns a null event code.

winFrame. 1If the window is not active, TaskMaster calls SelectWindow to activate
the window, exits, and returns a null event code. If the window is active and the
event occurred in a scroll bar that is part of the window frame, TaskMaster calls
TrackControl with a custom control action procedure. This action procedure per-
forms necessary scrolling and updating of the window by calling the wContDefProc
procedure that was defined when the window was created. TaskMaster then exits
and returns a null event code. If the event occurred in some other part of the frame,
TaskMaster exits and returns the wInFrame code.

Handling Mouse-down Activity in Windows 185

winDesk and winInfo. TaskMaster does nothing special for these two types of
events. It simply places the window pointer in TaskData and exits with the winDesk
or winlnfo code, as the case may he.

DRAWING IN A WINDOW

Objects are drawn in a window by moving a software-controlled, invisible pen around
the sereen with QuickDraw functions. These objects can be text characters, geo-
metric objects, or random scribblings. The pen has several characteristies that can
be set to affect the appearance of the object being drawn: an “ink” color and pattern,
a size, and a transfer mode, for example.

Note that when vou draw an object, only the bits for the pixels which fall inside
the visible portion of the content region are actually transterred to the content
region’s memory area. Other pixels are ignored.

The functions discussed below affect only the active QuickDraw GrafPort, which
is not necessarily the active window. To make a particular GrafPort active and to
adjust the coordinate origin of the GratPort properly, use StartDrawing:

PushLong WindowPtr ;Pointer to window
_StartDrawing

You need to call StartDrawing only when you are drawing outside a wContDefProc
window update subroutine.

If you do not do this, you may find that drawing operations take place in an
unexpected window, or in the correct window but at an unexpected position.
StartDrawing performs its function by calling SetPort to set the active drawing port
and SetOrigin to set the origin to the position indicated by the values of the window's
scroll controls.

Before drawing in a window, it is a good idea to save the pointer to the currently
active drawing port with GetPort:

PHA ;space for result
PHA

_GetPort

PopLong ThePort

When you are through drawing, you can restore the original port with SetPort:

PushLong ThePort
_SetPort

It is especially important that vou do this in a multiwindow environment to ensure
that you do not disrupt other drawing operations.

186 Windows and Graphics

Two important data structures you will use quite often with QuickDraw functions
are points and rectangles. A point is made up of a vertical position and a horizontal
position, as follows:

MyPoint DS 2 jvertical position
Ds 2 shorizontal position

Offsets to these two positions (from MyPoint) are given the symbolic names v (0)
and h (2) in the STANDARD.ASM code module. So, for example, to load the
horizontal position into the accumulator, you could use the following instruction:

LDA MyPoint+h

A rectangle is made up of four words representing the position of the top row, the
left side, the bottom row, and the right side:

MyRect ps 2 itop
ps 2 ;left
ps 2 shottom
ps 2 jright

The standard symbolic names for offsets to the four components are top (0), left (2),
bottom (4), and right (6) and they are included in the STANDARD.ASM code
module.

Note that you must change VidMode and XMaxClamp in the STANDARD.ASM
file to the proper values for the super high-resolution mode you want to use. For
640-by-200 mode, set them to $80 and 640, respectively. For 320-by-200 mode, set
them to 500 and 320,

PATTERNS AND COLORS

A pattern is an 8-by-8 pixel image that is transferred to the screen when lines are
drawn or shapes are painted and filled. When a pattern is drawn in a window, it is
blended with adjacent patterns to produce a smooth, regular pattern with no seam
lines. A pattern can also be a solid block of color, enabling you to draw in colors
other than black and white.

Patterns are actually transferred to the screen only after being processed by a
mask. The mask is an 8-by-8 bit image (not a pixel image) that specifies which pixels
in the pattern are to be drawn on the screen. Only those pixels in the 8-by-8 pixel
image that correspond to 1 bits in the 8-by-8 bit mask image are drawn. This means
that if the mask is all 1s, for example, the entire pattern is drawn to the screen.

The QuickDraw functions that deal with patterns are summarized in table 6-4.

A pattern is “chunky” in that each pixel is associated with either two color bits
(640-by-200 mode) or four color bits (320-by-200 mode). Thus, it takes either 16
bytes or 32 bytes to define a pattern, depending on which graphics mode is active.

Patterns and Colors 187

Table 6-4: QuickDraw Pattern-related Functions

Function ~ Deseription o

SetPenPat Sets the pen pattern to a specified pattern

GetPenPat Returns the current pen pattern

SetSolidPenPat Sets the pen pattern to a solid color

SetBackPat Sets the background pattern to a specified
pattern

GetBackPat Returns the current background pattern

SetSolid BackPat Sets the background pattern to a solid color

SolidPattern Returns the pattern corresponding to a
solid color

SetPenMask Sets the pen mask to a specified mask

GetPenMask Returns the current pen mask

For consistency, however, QuickDraw always allocates 32 bytes for a pattern in 640-
by-200 mode; the second group of 16 bytes is simply a duplicate of the first group.
The default pen pattern is a solid black color. It can be changed using SetPenPat:

PushPtr ThePattern iPointer to pattern
_SetPenPat

RTS

ThePattern 3211'%01010101° ;Pattern definition

A related function, GetPenPat, is called in the same way and fills the 32 bytes at
ThePattern with the pattern definition.

If you want to set the pen pattern to a solid color so that you can draw in color,
use SetSolidPenPat instead:

PushWord #ColorHum ;Color number
_SetSolidPenPat

The colors associated with each color number were given in table 6-1 at the
beginning of this chapter.

The difference between SetPenPat and SetSolidPenPat is that you pass a color
number to SetSolidPenPat, not a pattern pointer. QuickDraw takes care of creating
the appropriate pattern for you. The color number can be 0 to 15 for 320-by-200
mode or 0 to 3 for 640-by-200 mode.

188 Windows and Graphics

If you want to determine what the pattern for a solid color looks like, use
Solid Pattern:

Pushlerd #ColorNum ;color number

PushPtr ThePattern ;Pointer to pattern space
_SolidPattern

RTS

ThePattern DS 32 ;Space for pattern

A background pattern is the pattern used to erase areas of a window or draw new
areas that come into view. The default background pattern is solid white. It can be
changed with SetBackPat and SetSolidBackPat, functions that are called in the same
way as SetPenPat and SetSolidPenPat. There is also a GetBackPat function for
determining what the current background pattern is.

SETTING UP THE DRAWING PEN

Before you start drawing text in a window, vou must set the pen position. This is
the location at which text drawing will begin. There are two QuickDraw functions
for explicitly setting the pen position: MoveTo and Move.

MoveTo moves the pen position to a specific point in the local coordinate system
of the window. To use it, push the horizontal and vertical components of the
coordinate on the stack:

PushWord #2 iHorizontal pesition
Pushiord #10 ;Vertical position
_MoveTo

If you wish, vou can combine the two PushWord operations into a single PushLong.
This is handy if the point to which you want to move is already stored in memory.
For example, suppose GetNextEvent or TaskMaster returns a button-down event
in the content region of a window. To move the pen position to the point specified
in the Where field of the event record, use the following subroutine:

PushLong HWhere

_GlobalTeloeal 1Switch to local coordinates
PushLong Where ;This pushes h then v
_MoveTo

RTS

Notice that because TaskMaster and GetNextEvent return a global coordinate, that
coordinate must be converted to a local coordinate for the currently active window
before calling MoveTo.

When QuickDraw draws a text character, the current vertical pen coordinate
becomes the baseline for the font. Because characters rise above the baseline, you

Setting up the Drawing Pen 189

should not specify a vertical coordinate of 0 for MoveTo; if vou do, you will see only
the descenders of the characters on the first line when you start drawing.

The Move function moves the pen location in a relative way. That is, with it vou
can move the pen so many pixels horizontally and vertically from the current pen
location. For instance, if you want to drop down to the next text line in the window
without changing the horizontal position (a line-feed operation), use the following
code segment:

FushWord #0 iHorizontal displacement
PushlWord #9 iVertical displacement
_Move

A value of 9 is used for the vertical displacement because this is the height of the
system font. You can calculate this using the GetFontlnfo function (as described
below). Note that positive horizontal displacements are to the right and positive
vertical displacements are downward.

To determine the current position of the pen, perhaps to see if vou are still inside
the window's content region, use GetPen:

PushPtr ThePoint ;Pointer to point
_GetPen
RTS

ThePoint DS 4 sv, h position

GetPen returns the position in the local coordinates of the current GrafPort.

Setting the Pen State
You may want to set several other pen characteristics before beginning to draw
graphics. (The functions described below do not affect text drawing operations.) The
important characteristics are:

* The pen size

» The pen transfer mode

* The pen drawing pattern

* The pen mask

These four values are said to define the pen state. You can determine all their values
at once using GetPenState;

PushPtr PS5_Record iPtr to pen state record
_GetPenState
RTS

190 Windows and Graphics

FS_Record ANOP

PnLoc DS 4 ;Pen position (point)
PnSize DS 2 iPen height

DS 2 ;Pen width
PnMode DS 2 :Pen transfer mode
PnPat DS 32 ;Pen pattern
PnMask Ds 8 :Pen mask

The parameter table passed to GetPenState is called a pen state record.
To change the pen state, use the following functions:
» SetPenSize
* SetPenMode
s SetPenPat (described above)
» SetPenMask (described above)
e SetPenState
The size of the pen refers to the height and width of its nib. This nib hangs down

and to the right of the current pen position. To change the pen size, say to 3 pixels
by 5 pixels, use SetPenSize:

PushWord #3 ;New width in pixels
PushWord #5 ;New height in pixels
_SetPenSize

You can determine the current pen size with GetPenSize:

PushPtr PenSizeLoc ;Pointer to result space
_GetPenSize
RTS

PenSizeLoc DS 4

GetPenSize returns the width and height at PenSizeLoc.

The pen mode refers to the way in which QuickDraw combines the pattern flowing
out of the pen with the pixels on the screen. The result of the combination is
displayed on the screen. The different modes are summarized in table 6-5. (Note
that some of these modes are for text drawing only.)

To change several pen characteristics at once, call SetPenState by passing it a
pointer to a filled-in pen state record.

If you have changed several pen characteristics and you want to return to the
standard pen state, call PenNormal (no parameters). It sets the pen size to 1 by 1,
the pen mode to COPY, the pen pattern to black, and the pen mask to all 1s.

Setting up the Drawing Pen 191

Table 6-5: The QuickDraw Transfer Modes

Symbolic

Transfer Mode Name Description

$0000 COPY Pixels are copied directly to th
screen.

$0001 OR Pixels are logically ORed with
the screen pixels.

$0002 XOR Pixels are logically exclusive-
ORed with the screen pixels.

0003 BIC Pixel bits which are set to 1
cause corresponding pixels on
the screen to be cleared to 0.

50004 foreCOPY Text only: Foreground pixels
are copied directly to the
screen,

30005 foreOR Text only: Foreground pixels

are logically ORed with the
screen pixels.

30006 toreXOR Text only: Foreground pixels
are logically exclusive-ORed
with the sereen pixels.

30007 foreBIC Text only: Foreground pixel
bits which are set to 1 cause
corresponding pixel bits on the
screen to be cleared to 0.

$8000 notCOPY The pen pattern or text is
inverted, then copied directly
to the screen.

$5001 notOR The pen pattern or text is
inverted, then ORed with the
screen pixels.

$8002 notXOR The pen pattern or text is
inverted, then logically
exclusive-ORed with the screer
pixels.

192 Windows and Graphics

Table 6-5: Continued

Symbolic
Transfer Mode Name
$8003 notBIC
58004 notoreCOPY
$8005 notforeOR
$5006 notforeXOR
$8007 notfore BIC

FONT CHARACTERISTICS

Description

The pen pattern or text is
inverted, then those pixel bits
which are set to 1 cause
corresponding pixels on the
screen to be cleared to 0.

Text only: The character
rectangle is inverted, and the
pixels that are on are copied
directly to the screen.

Text only: The character
rectangle is inverted, and the
background pixels are logically
ORed with the screen pixels.

Text only: The character
rectangle is inverted, and the
background pixels are logically
exclusive-ORed with the screen
pixels.

Text only: The character

rectangle is inverted, and the
background pixels which are set
to 1 cause corresponding pixel
bits on the screen to be cleared
to 0.

A font is a set of characters having the same general ornamental design. One font,
called the system font, is stored in the Gs ROM and is always available for use by
the QuickDraw text-drawing functions. Other fonts may be defined and stored in
the SYSTEM/FONTS/ subdirectory on the boot disk. They can be loaded into
memory and made available to an application using the Font Manager. QuickDraw
can draw characters in any available font, but it will use the system font unless you

specify otherwise.

Although QuickDraw has a few font-related functions, you should use the more
powerful Font Manager functions instead. To start up the Font Manager, use

FMStartup:

Font Characteristics 193

PushWord MylID iProgram ID (from MMStartup)
Pushlord DPAddr ;Address of one page in bank $00
_FMStartup

The Font Manager requires the presence of most Gs tool sets, including the rarely-
used List Manager. Make sure they are all loaded before calling FMStartup.
FMStartup scans the SYSTEM/FONTS/ subdirectory of the boot disk and makes
a list of the font families it finds there. A font family is a general font type such as
Helvetica, Courier, or Venice. The default system font is called Shaston.
A font of a particular family, size, and style is described by a fontlD long word.
Here is its structure:

= bits 00-15 : font family number
e hits 16-23 : font stvle byte

= hits 24-31 : font size byte

The family number is the number the Font Manager assigns to the font when it
puts the font in its font list. Bits in the style byte affect the style of the font (bold,
italic, underline, outline, or shadow); stvle bytes are described below in the discus-
sion of SetTextFace. The font size is the point size of the font (1 point = 1/72 of an
inch).

The user can install a new font relatively easily, at least if the application calls
ChooseFont to bring up a standard font selection dialog box:

PHA ;space for result

PHA

PushLaong TheFentlD ;fontID of current fant
PushWord #0 30 = 1list all fonts
_ChooseFont

PoplLong NewFontID ;Result is new fontlD

Push zero instead of TheFontlD to select the system font.

The form of the font selection dialog box is shown in figure 6-8. It consists of a
scrollable window that holds a list of font names for selection, checkboxes for
selecting the font stvle, and a scrollable window that holds a list of point sizes that
are available. There is also an edit box for tvping in any other point size to which a
font should be scaled; scaled fonts can look ragged, however.

ChooseFont returns the fontlD for the font selected. or 0 if the dialog box was
canceled.

194 Windows and Graphics

Figure 6-8. The Font-selection Dialog Box

Font:
Courier
Geneva
Helvetica
Times
Yenice

style: Size: Other
Erin | MG dize
[]Bold

[Italic
[] Underline

[C]0utline
[Shadow

Font Characteristics 195

Figure 6-9. The Characteristics of an Apple 1lcs Font

ascent
line
font
ascent
character i next character
origin ——_ / origin
baseline
font
descent descent
T line
leading o iern widMax

next ascent
line

To make the selected font the current font, so that it will be used by QuickDraw
text drawing functions, call InstallFont:

FPushLong NewFontlID ;fontID of desired font
FushWord #0 30 = enable scaling
_InstallFont

The second parameter controls whether font scaling is enabled. If bit 0 is 1, scaling
is not enabled.

When you are through using the new font, you can make the system font the
current font again with the LoadSysFont function (no parameters). If you are never
going to use the new font again, make it purgeable with SetPurgeStat:

PushLong MewFontlID ifontID of font
PushWord #%00010000 ibit 4 = 1 (purge)
-SetPurgeStat

Bit 4 of the second parameter controls whether the specified font is to be purgeable
(1) or not purgeable (0).
Font Definitions

As shown in figure 6-9, each character in a font is defined inside a rectangular grid,
called the font rectangle, which encloses the largest character in the font. Another
rectangle, the character rectangle, is the smallest rectangle that can enclose the

196 Windows and Graphics

outline of the character. The size of this rectangle will vary, depending on the size
of the character.

Those points in a character rectangle that are highlighted are called foreground
points, because they define the actual shape of the character. The other points are
background points. When a character is transferred to a GrafPort, the foreground
points become black pixels and the background points become white pixels, although
you can change these default colors with SetBackColor and SetForeColor if you
wish. The colors are defined by either a 2-bit number (640-by-200 mode) or a 4-bit
number (320-by-200 mode), so there are either four or sixteen colors to choose from.

Each character in a font is defined relative to two reference points, the baseline
and the character origin. The baseline is an imaginary line on which the character
rests; it serves much the same purpose as a line on a piece of notepaper. The number
of pixel lines between the baseline and the top of the font rectangle is the ascent.
The number of lines between the baseline and the hottom of the font rectangle is
the descent—this is where the descenders of characters such as g, v, j, p, and g
appear.

The character origin marks the position in the character rectangle that is aligned
with the pen position before the character is drawn. The widMax of a font is the
maximum number of pixels between the character origins of two successive char-
acters. For a proportional font, such as the system font, the actual widths of most
characters are less than this. You can, however, tell QuickDraw to draw system font
characters that are all widMax pixels wide using SetFontFlags:

PushWord #1 ;1 = fixed-width, 0 =proportional
_SetfontFlags

To return to proportional mode, pass a 0 to SetFontFlags. You probably will not
use fixed-width characters very often, however, because the gaps between characters
are large and unsightly. You also cannot fit as many characters across the width of
the screen.

The leading of a font is defined as the number of blank lines between the descent
line and the bottom of the font rectangle. This area acts as a spacer between
successive lines of text. GetFontlnfo returns the ascent, descent, widMax, and
leading of the currently active font in a four-word font information record. For the
system font, the results are as follows:

e ascent 7

descent 1

widMax 12

leading 1

Font Characteristics 197

The subroutine below, which incorporates GetFontInfo, can be used to move the
pen position to the next line in the window:

v GEQU 0 ;vertical fieid offset
CRLF START
PushPtr FIRecord iPointer to font record
_GetFontinfo
cLC
LDA Ascent
ADC Descent
ADC Leading
STA FontHeight
PushPtr PenPaos ;Pointer to & point
_GetPen ;:Get current pen position
CLC
LDA PenPos+v :Get current vertical
ADC FontHeight 3Add line height
PEA 2 jhorizontal (left edge)
PHA ;jvertical (next line)
_MoveTo
RTS
FIRecord ANOP :Fent tnformation record
Ascent DS 2
Descent DS 2
WidMax DS 2
Leading DS 2
FontHeight DS 2
PenFos DS 4 spoint (wv,h)
END

This subroutine adds ascent, descent, and leading together to calculate the height
of the font. It then adds the height to the current vertical pen position to determine
the vertical position of the next baseline. Finally, it calls MoveTo to position the
pen at the left side of this line.

You can assign certain typeface attributes to a font using the SetTextFace function.
The five attributes currently defined are bold, italic, underline, outline, or shadow
or any combination of the five. Bits in the word parameter passed to SetTextFace
correspond to attributes as shown in figure 6-10. If all the bits are 0, the typeface
is called plain.

For example, to switch the typeface to bold, execute the following code segment:

PushlWord #%00000001 itextface word
_SetTextFace

195 Windows and Graphics

Figure 6-10. The Stvle Byte Used by SetTextFace

716|514]3| 2 1 0

" " 1 L bold

not used

Ji8lic

underline

eutline

shadow

Note that some fonts, including the svstem font, may not support all of these
attributes.

GetTextFace returns the current textface word:

PHA jspace for result
_GetTextFace
PLA :Get the result

DRAWING CHARACTERS

To print a single character in a window, position the pen with Move or MoveTo.
Then push the ASCII code for the character on the stack and call DrawChar:

PushWord #%41 +ASCI] code for "Aan
_DrawChar

As in all QuickDraw text drawing functions, the ASCII code for standard characters
must have bit 7 cleared to 0. See appendix 1 for a description of the ASCII encoding
scheme. The system font assigns various foreign characters, monetary symbols, and
common icons to the 128 codes that have bit 7 set to 1.

There are three other “Draw” functions for drawing sequences of characters stored
in memory: DrawString, DrawCString, and DrawText. The one to use depends on
whether the sequence begins with a length byte (a Pascal-type string), ends with a

Drawing Characters 199

zero byte (a C-type string), or is an arbitrary sequence of characters with no length
indicator (text}.
Three subroutines showing how to use these drawing functions are given helow:

DrawSub1 PushPtr MyPString ;Pointer to string
_DrawString
RTS
DrawSubi PushPtr MyCString ;Pointer to string
_DrawCString
RTS
DrawSub2 PushPtr MyText sPointer to string
PushlWord #14 ;length
_DrawText
RTS
MyPString DC I1viB! ;length
De C'# Pascal string.' jthe characters
MyCString DC C'A C string.! 1the characters
DC 110! ;trailing 00
MyText Dc C'This is a text siring.'

Notice that for DrawText, you identify the portion of the text to be displayed by
specifving a starting position and the number of characters with which you want to
work. This is not necessary for DrawString or DrawCString, because the length is
known and the entire string is always printed.

If you use Pascal-type strings quite often, you will find it convenient to define
them with a macro called STR, STR is useful because it automatically calculates the
length of the string and inserts it before the string’s character codes. You do not
have to count the characters yourself. Here is how to define the string "A Pascal
string” using STR instead of two DC directives:

MyPString STR 'A Pascal string'

A definition for the STR macro is given in listing 6-3.

It is important to realize that the pen position automatically advances along the
line as vou draw characters. There is no need to set it explicitly with Move or
MoveTo unless you want to move to another line or to a non-adjacent position on
the same line.

200 Windows and Graphics

Note that none of the text-drawing functions react to control characters in standard
ways. If you pass a carriage return code ($0D) to DrawChar, for example, the
drawing position does not automatically move to the left side of the next line in a
window: instead, an inverse question mark character appears on the screen (indi-
cating that there is no symbol for the character in the font definition). It is up to
the application to intercept control characters and handle them appropriately.

Text Measuring

It is often convenient to know the width of a character, or a series of characters,
before drawing. Knowing the width, you can easily center the text or determine if
there will be enough room to display it on the current line. The program in listing
6-4 shows how to center a line of text in a window, for example.

QuickDraw has a set of text measuring functions you can use to determine widths:

« CharWidth (for a single character)
« TextWidth (for a sequence of characters)
« StringWidth (for a string preceded by a length byte)

« CStringWidth (for a string followed by a $00 byte)

To use these functions, first push a dummy word on the stack to reserve space for
the result (the width in pixels), and then push the ASCII code for the character
(CharWidth) or a pointer to the text or string (TextWidth, StringWidth,
CStringWidth). For TextWidth, you must also push the length of the text string.
Finally, call the function and pop the result from the stack.

Text Color

Using SetForeColor and SetBackColor, you can set the foreground and background
color of text vou draw in a window. Both require a parameter word that contains
the color number to which you want to switch. In 640-by-200 mode, this number
can be 0 to 3; for 320-by-200 mode, it can be 0 to 15.

Here is how to use SetForeColor and SetBackColor:

PushMord #ColorNum sPush new coler number
_SetfForeColor ;(or SetBackColor)

To determine the current color characteristics of the font, use GetForeColor and
GetBackColor. They return the color number on the stack:

Drawing Characters 201

PHA ;space for result

_GetBackColor
PLA
STA TheColor ;pop the result

The default background and foreground colors are white and black, respectively.
The program in listing 6-5 shows how to display text in all 16 colors in 320-by-
200 mode using SetForeColor.

Transfer Modes for Text

A transfer mode refers to the technique QuickDraw uses to draw a text character
on the screen. The mode defines how QuickDraw is to combine a pixel in the
character with the corresponding pixel in the sereen buffer. :

The possible transfer modes were described in table 6-5. The default mode is
COPY, which causes the pixels in the character rectangle to replace the correspond-
ing pixels on the screen.

Another particularly useful mode is foreXOR. If you use this mode, you can draw
text on any background, and then erase the text and redraw the background simply
by redrawing the text again at the same position.

To set the transfer mode, use SetTextMode:

PushMord #TextMode :Text transfer mode code
_SetTextMode

You can determine what the currently active mode is using GetTextMode:

PHA ;space for result
_GetTextMode

PLA

STA TheMode ;Pop the mode code

It is hard to visualize the effect of some of the transfer modes. It is best to write a
short program that uses different modes to draw text on differently colored back-
grounds.

DRAWING LINES AND SHAPES

QuickDraw has several functions for drawing objects other than characters or text
strings. You can use these functions to draw lines, rectangles, arbitrary regions,
polygons, ovals, round rectangles, and arcs.

202 Windows and Graphics

Lines

You can draw straight lines with the Line and LineTo functions. LineTo draws a
line from the current pen location to the specified point:

PushWord #43 ;Horizontal position
PushWord #22 iVertical positian
_LineTo ;Draw the line

With Line you can draw a line that terminates at a position that is relative to the
current pen position:

PushWord #10 jHorizontal displacement
PushWord #5 s1Vertical displacement
_Line

Positive horizontal displacements move the pen to the right. Positive vertical dis-
placements move it down.

After either Line or LineTo is called, the pen position moves to the end of the
new line.

Shapes
QuickDraw uses five fundamental drawing operations to manipulate the shapes it
supports:
Framing—drawing an outline of the shape.
Painting—filling the interior of a shape with the current pen pattern. You can
set the pattern to a particular color using SetSolidPenPat or to any arbitrary

pattern using SetPenPat.

Erasing—replacing the interior of a shape with the background pattern. You
can set the background pattern using SetSolidBackPat or SetBackPat.

Inverting—inverting the pixels inside a shape.
Filling—filling the interior of a shape with a specified pattern.

The specific shape-drawing functions for objects are summarized in table 6-6.

Drawing Lines and Shapes 203

Table 6-6:

QuickDraw 11 Shape-drawing Functions

Funection

Description

FrameRect
FrameRgn
FramePoly
FrameOval
FrameRRect
FrameArc

PaintRect

PaintRgn

PaintPoly

PaintOval

PaintRRect

PaintArc

EraseRect

EraseRgn

ErasePoly

EraseOval

EraseRRect

EraseArc

204 Windows and Graphics

Draws the outline of a rectangle
Draws the outline of a region

Draws the outline of a polygon

Draws the outline of an oval

Draws the outline of a round rectangle
Draws the outline of an arc

Fills the interior of a rectangle with
the current pen pattern

Fills the interior of a region with the
current pen pattern

Fills the interior of a polygon with the
current pen pattern

Fills the interior of an oval with the
current pen pattern

Fills the interior of a round rectangle
with the current pen pattern

Fills the interior of an arc (a wedge)
with the current pen pattern

Fills the interior of a rectangle with
the current background pattern

Fills the interior of a region with the
current background pattern

Fills the interior of a polygon with the
current background pattern

Fills the interior of an oval with the
current background pattern

Fills the interior of a round rectangle
with the current background pattern

Fills the interior of an arc (a wedge)
with the current background pattern

Table 6-6: Continued

Function Description

InvertRect Inverts the pixels in a rectangle

InvertRgn Inverts the pixels in a region

InvertPoly Inverts the pixels in a polyvgon

InvertOval Inverts the pixels in an oval

InvertRRect Inverts the pixels in a round rectangle

InvertArc Inverts the pixels in an are (The are is
defined by a starting angle and an
angular extent.)

FillRect Fills the interior of a rectangle with a
specified pattern

FillRgn Fills the interior of a region with a
specified pattern

FillPoly Fills the interior of a polygon with a
specified pattern

FillOval Fills the interior of an oval with a
specified pattern

FillRRect Fills the interior of a round rectangle
with a specified pattern (The
curvature of the corners can also be
set.)

FillAre Fills the interior of an arc with a

specified pattern (The arc is defined
by a starting angle and an angular

extent.)

To draw the outline of a rectangle in a window, call FrameRect by passing a pointer
to the definition of the rectangle:

PushPtr TheRect
_FrameRect
RTS

;Pointer to rectangle

TheRect DC 12'30,20,100,120' ;Top, left, bottom, rxght

Drawing Lines and Shapes 205

Notice that the coordinates for the rectangle are specified in top, left, bottom, right
(TLBR) order.
To erase the rectangle, use EraseRect:

PushPtr TheRect ;Pointer to rectangle
_EraseRect

To invert the pixels inside the rectangle, use InvertRect:

PushPtr TheRect ;Pointer to rectangle
_InvertRect

To fill the interior of a rectangle with the current pen pattern, use PaintRect:

PushPtr TheRect iPointer to rectangle
_PaintRect

To fill it with any arbitrary pattern, use FillRect:

PushPtr TheRect ;Pointer to rectangle
PushPtr ThePattern ;Pointer to pattern definitien
_FillRect

The pattern definition defines an 8 by 8 pixel grid, as explained in the section above
called “Patterns and Colors.”

The corresponding shape-drawing functions for other shapes have suffixes of Rgn
(regions), Poly (polygons), Oval (ovals), RRect (round rectangles), and Arc (arcs).
The functions are called in much the same way as the corresponding rectangle
functions, but instead of pushing a pointer to a rectangle. push the following
information:

For regions, a handle to the region
For polygons, a handle to the polygon definition

For ovals, a pointer to the imaginary rectangle enclosing the oval

For round rectangles, a pointer to the imaginary rectangle enclosing the round
rectangle, followed by two words describing the width and height of the ima-
ginary oval inscribed in each corner

For arcs, a pointer to the imaginary rectangle enclosing the imaginary oval of
which the are forms a part, followed by two words describing the starting angle

206 Windows and Graphics

of the arc (in degrees) and the extent of the arc (in degrees). Angles are measured
relative to a vertical axis moving up from the center of the oval

Note that the interior of an arc is actually the wedge bounded by the arc and the
imaginary lines from the ends of the arc to the center of the enclosing oval.

Polygons

In the previous section, we came across a shape called a polygon. A polygon, as any
student of geometry can tell vou, is an enclosed, multisided object. To define a
polygon with QuickDraw, first open a polygon record by calling OpenPoly, as follows:

PHA ;Space for result (handle)
FHA

_OpenPoly

Popleong PolyHndl ;Pop handle to polygon

The next step is to draw the outline of the polygon by making a series of calls to
LineTo until the entire outline has been traversed. These lines are not actually
displaved on the screen; the LineTo parameters are just stored in the polygon
record. Finally, call ClosePoly (no parameters) to complete the polygon creation
process.

Using the polvgon handle returned by OpenPoly, vou can perform all the standard
QuickDraw drawing operations, such as FramePoly, PaintPoly, and FillPoly. The
polygon you draw appears at the same position at which it was defined, unless you
shift its position with the OffsetPoly function:

PushLong PolyHndl ;Polygen handle

PushWord #horiz ijHorizontal displacement
PushWord #vert iVertical displacement
_OffsetPoly

Positive displacements are down and to the right.
When vou do not need the polygon any more, dispose of it by calling KillPoly:

PushLong PolyHndl iHandle to polygon record
_KillPoly

This frees up the memory space QuickDraw previously allocated for the polygon
record.

Drawing Lines and Shapes 207

An example of how to deal with polygons is given in listing 6-6. This code defines
a pentagon and draws it on the screen.

CREATING AN APPLICATION WITH WINDOWS

Now that methods of creating windows and drawing characters and objects have
been covered, it is time to put it all together. The program in listing 67 shows how
to implement many of the important functions that have been discussed in this
chapter. It also illustrates how to deal with seroll controls and update procedures.

This program, called TextReader, loads a readable text file into memory from
disk and lets you view any part of it using the right and bottom scroll controls of a
window.

In this program, the file is loaded into memory using several ProDOS 16 com-
mands that have not been covered yet—OPEN, NEWLINE, GET_EOF, READ,
and CLOSE. These commands will be discussed in chapter 10, although you can
probably guess what most of them do already. The program also uses an SFGetFile
dialog box to request the name of the file to be loaded. This dialog box will also be
discussed in chapter 10.

After loading a file from disk, TextReader uses NewWindow to create a window
with seroll controls in its window frame. It does this by setting the right and bottom
scroll bits of the window frame word in NewWindow's parameter list. It also sets
the bits for a title bar, zoom box, and grow box.

Several other items in the window parameter list must be set up for any window
containing scroll controls. First, you must specify the number of lines the content
region of the window should seroll when the mouse is pressed in different parts of
the scroll controls (except the thumbs). TextReader is designed to seroll one entire
line of text if the mouse is pressed in the up or down arrow of the right scroll
control. Thus, a value of 9, the pixel height of the system font TextReader uses, is
stored in the appropriate position in the parameter table. A convenient scrolling
distance for activity in the left or right arrow of the bottom scroll bar is 12 pixels,
because this is the maximum width of a character in the system font.

The scrolling distance for activity in the page-up or page-down regions of the
right scroll bar is the full height of the content region, minus the height of one line
(9 pixels). The height of one line is subtracted to ensure that all lines are not scrolled
off the screen—this makes it easier for the user to keep track of a scrolling operation.
Similarly, the scrolling distance for the page-left and page-right regions of the bottom
scroll bar is set to the width of the content region, minus 12. Both of these distances
are updated every time TaskMaster returns a non-null event in case the window
has been resized by zooming or by dragging the grow box.

The next step is to specify the maximum height and width, in pixels, of the block
of text being displaved in the window. This information is needed so that the size

208 Windows and Graphies

of the scroll control thumbs and page regions can be calculated. For example, the
ratio of the height of the thumb in the right scroll bar to the height of the entire
seroll bar is the same as the ratio of the height of the content region to the height
of the document.

In TextReader, the maximum width is set to 960 on the assumption that no line
will be wider than 80 characters (remember, the maximum width of a single character
is 12 pixels). The maximum height is set initially to an arbitrary 1,024, but this is
changed once the file has been loaded and its height is known. TextReader calculates
the height by scanning the loaded file for end-of-line characters (carriage returns)
and adding 9 to the DocSize variable for every one it finds. An arbitrary figure of
20 pixels is added to the height to give the document a bottom margin.

Another parameter vou must set before calling NewWindow is the one holding
the position within the document that corresponds to the top left corner of the
content region. NewWindow uses this parameter to determine where to draw the
thumbs of the scroll bars. TextReader sets this position to 0,0 so that the top line
of the text will appear at the top of the window when the content region is updated
for the first time,

The last scrolling-related parameter that must be set is the one containing the
address of the subroutine that TaskMaster calls when the window needs updating.
Every scrolling operation forces a screen update, because every such movement
brings a new portion of the document into view. This subroutine is called Wind-
Updaté in the TextReader program and is responsible for redrawing the content
region of the window.

Before TaskMaster calls the WindUpdate screen updating subroutine, it uses
SetOrigin to assign the top left-hand corner of the window’s content region to the
position within the document given by the values of the scroll controls. This means
that the content region is already aligned with the active portion of the document.

The easiest way to update the content region is simply to redraw the entire
document; because drawing is clipped to the content region, you will not mess up
other areas of the screen. This is not a satisfactory method for large documents,
however, because it is very slow—after all, vou must go through the charade of
redrawing portions of the document that do not actually appear in the window.

A much faster alternative, the one used by TextReader, is to redraw only that
portion of the document appearing in the content region. To locate the first line
that will appear in the content region, TextReader first zeroes a counter, then adds
9 (the line height) to the counter for each end-of-line character (carriage return) it
finds while scanning through the document from the beginning. When the counter
becomes greater than the vertical position of the top of the content region (stored
at PortRect+top), the search is over. Each line in the document is then drawn (with
DrawText) until the pen position is one clear line below the bottom of the content
region, (Carriage return codes are handled by calling CRLF to move the invisible

Creating an Application with Windows 209

drawing pen to the left side of the next line.) TextReader does not bother to do
range checking on the sides, although you could add code to do this to make updates
happen a bit faster.

TaskMaster calls the update handler with a JSL instruction, so the handler ends
with an RTL instruction. Do not end with an RTS instruction as you would if the
routine was calted with JSR. Another tip on writing an update handler relates to
the direct page: the active direct page when TaskMaster calls the update handler is
not the direct page the application uses. 1f you must access data in the application’s
direct page, perhaps to use pointers you have previously set up in direct page,
switch to the direct page first. The WindUpdate subroutine does this so that it can
access the direct page pointer to the text block.

Once TextReader defines the window and loads the text file, it enters a short
TaskMaster event loop. Because TaskMaster automatically takes care of all mouse-
down events in the scroll bars and handles all update events, the application does
not have to do anything special to support scrolling.

REFERENCE SECTION
Table R6-1:

The Major Functions in the QuickDraw II Tool Set ($04)

Function Stack Description of
Function Name Number Parameters Parameter
CharWidth SAS result (W) Width of character in pixels
Char (W) The character
ClosePoly 5C2 [no parameters]
CStringWidth $SAA result (W) Width of string in pixels
TheCString (L) Ptr to C-style text string
DrawChar $A4 Char (W) ASCII code for character
DrawCString SAB TheCString (L) Ptr to C-style text string
DrawString $A5 TheString (L) Ptr to text string
DrawText SAT TheText (L) Ptr to start of text
Count (W) Number of characters to draw
EraseArc 564 Rectangle (L) Ptr to rectangle
StartAngle (W) Starting angle
ArcAngle (W) Extent of angle
EraseOval 85A Rectangle (L) Ptr to rectangle

210 Windows and Graphics

Function Stack Description of
Function Name ~ Number Parameters Parameter
ErasePoly $BE PolyHndl (L) Handle to polygon
EraseRect $55 Rectangle (L) Ptr to rectangle
EraseRgn $7B RgnHndl (L) Handle to region
EraseRRect $5F Rectangle (L)) Ptr to rectangle
OvalWidth (W) Width of corner oval
OvalHeight (W) Height of corner oval
FillAre $66 Rectangle (L) Ptr to arc’s rectangle
StartAngle (W) Starting angle
ArcAngle (W) Extent of angle
PatternPtr (L) Ptr to fill pattern
FillOval $5C Rectangle (L) Ptr to oval's rectangle
PatternPtr (L) Ptr to fill pattern
FillPoly $C0 PolyHndl (L) Handle to polygon
PatternPtr (L) Ptr to fill pattern
FillRect 857 Rectangle (L) Ptr to rectangle
PatternPtr (L) Ptr to the fill pattern
FillRgn $7D RenHndl (L) Handle to region
PatternPtr (L) Ptr to the fill pattern
FillRRect %61 Rectangle (L) Ptr to rrect’s rectangle
OvalWidth (W) Width of corner oval
OvalHeight (W) Height of corner oval
PatternPtr (L) Ptr to fill pattern
FrameArc $62 Rectangle (L) Ptr to rectangle
StartAngle (W) Starting angle
ArcAngle (W) Extent of angle
FrameOval $58 Rectangle (L) Ptr to rectangle
FramePoly $BC PolyHndl (L) Handle to polygon

Reference Section

211

Function Stack Description of

Function Name Number Parameters Parameter
FrameRect %53 Rectangle (L) Ptr to rectangle
FrameRgn 579 RegnHndl (L) Handle to region
FrameRRect $5D Rectangle (L) Ptr to rectangle

OvalWidth (W) Width of corner oval

OvalHeight (W) Height of corner oval
GetBackColor $A3 result (W) Background color number
GetBackPat $35 PatternPtr (L) Ptr to the background pattern
GetColorEntry 511 result (W) Color entry value

TableNum (W) Color table number

EntryNum (W) Color number
GetColorTable $0F TableNum (W) Color table number

ColorThlIPtr (L) Ptr to space for color table
GetFontInfo $96 FIRectPtr (L) Ptr to font info record
GetForeColor $A1 result (W) Foreground color number
GetPen $29 PointPtr (L) Ptr to space for point result
GetPenMask $33 MaskPtr (L) Ptr to space for pen mask
GetPenMode $2F result (W) Current pen mode
GetPenPat 831 PatternPtr (L) Ptr to current pen pattern
GetPenSize $2D PointPtr (L) Ptr to width/height result
GetPenState 2B PenStatePtr (L) Ptr to space for PS record
GetPort 31C result (L) Ptr to current GrafPort
GetPortRect %20 RectPtr (L) Ptr to space for rect result
GetSCB $13 result (W) Scanline control byte

ScanLine (W) Scanline number
GetTextFace $9B result (W) Current textface word
GetTextMode $9D result (W) Current text drawing mode
GlobalToLocal $85 PointPtr (L) Ptr to point to convert

212 Windows and Graphics

Function Stack Description of
Function Name __:-‘\.'umher Parameters Parameter
InitColorTable 50D ColorThlPtr (L) Ptr to space for color table
InvertAre 565 Rectangle (L) Ptr to arc’s rectangle
StartAngle (W) Starting angle
ArcAngle (W) Extent of angle
InvertOval %58 Rectangle (L) Ptr to oval's rectangle
InvertPoly $BF PolyHndl (L) Handle to polygon
InvertRect $56 Rectangle (L) Ptr to rectangle
InvertRgn $7C RgnHndl (L) Handle to region
InvertRRect $60 Rectangle (L) Ptr to rrect’s rectangle
OvalWidth (W) Width of corner oval
OvalHeight (W) Height of corner oval
KillPoly $C3 FolyHndl Handle to polygon
Line 83D hOffset (W) Horizontal offset
vOffset (W) Vertical offset
LineTo $3C hPos (W) Horizontal position
vPos (W) Vertical position
LocalToGlobal $84 PointPtr (L) Ptr to point to convert
Move $3A DispX (W) Horizontal displacement
DispY (W) Vertical displacement
MoveTo 338 HorizPos (W) Horizontal position
VertPos (W) Vertical position
OffsetPoly $C4 PolyHndl (L) Handle to polygon
hOffset (W) Horizontal displacement
vOffset (W) Vertical displacement
OpenPoly 3C1 result (L) Handle to polygon

Reference Section

213

Function Stack Deseription of
Function Name ~ Number Parameters Parameter
PaintArc $63 Rectangle (L) Ptr to rectangle
StartAngle (W) Starting angle
ArcAngle (W) Extent of angle
PaintOval $59 Rectangle (L) Ptr to rectangle
PaintPoly $BD PolyHnd]l (L) Handle to polygon
PaintRect $54 Rectangle (L) Ptr to rectangle
PaintRgn STA RegnHndl (L) Handle to region
PaintRRect $5E Rectangle (L) Ptr to rectangle
OvalWidth (W) Width of corner oval
OvalHeight (W) Height of corner oval
PenNormal 536 [no parameters|
QDShutDown %03 [no parameters]
QDStartup 302 DPAddr (W) Address of 3 pages in bank 0
MasterSCB (W) $8000 = 640/50000 = 320
MaxWidth (W) Size of largest pixel map
UserlD (W) ID tag for memory allocation
SetAllSCBs $14 NewSCB (W) New SCB value for all lines
SetBackColor $A2 ColorNum (W) Background color number
SetBackPat $34 PatternPtr (L) Ptr to new background
pattern
SetColorEntry 310 TableNumber (W) Color table number (0-15)
EntryNumber Color number in table (0-15)
(W)
NewColor (W) New color value
SetColorTable S0E TableNumber (W) Color table number (0-15)

214 Windows and Graphics

ColorThlPtr (L)

Ptr to new color table

Function Stack Description of
Function Name ~ Number Parameters Parameter
SetFontFlags $98 FontFlag (W) New font flags
SetForeColor SA0 ColorNum (W) Foreground color number
SetOrigin 523 xOrigin (W) X coord of upper-left corner
vOrigin (W) Y coord of upper-left corner
SetPenMask $32 MaskPtr (L) Ptr to the new pen mask
SetPenMode $2E PenMode (W) New pen mode
SetPenPat $30 PatternPtr (L) Ptr to new pen pattern
SetPenSize $2C PenWidth (W) Width of pen in pixels
PenHeight (W) Height of pen in pixels
SetPenState $2A PenStatePtr (L) Ptr to pen state record
SetPort $1B PortPtr (L) Ptr to new GrafPort
SetPortRect $1F Rectangle (L) Ptr to new port rectangle
SetSCB $12 ScanLine (W) Scan line number (0-199)
NewSCB (W) New SCB value
SetSolidBackPat $38 ColorNum (W) Color # of background
pattern
SetSolidPenPat $37 ColorNum (W) Color # for pen pattern
SetTextFace $9A TextFace (W) New textface word
SetTextMode $9C TextMode (W) New text drawing mode
SolidPattern %39 ColorNum (W) Color number
PatternPtr (L) Pointer to pattern for color
StringWidth $A9 result (W) Width of string in pixels

TheString (L)

Ptr to text string

Reference Section 215

Function Name

Stack
Parameters

Function
Number

Description of
Parameter

TextWidth

Table R6-2:

SAB result (W)
TheText (L)

Count (W)

QuickDraw I1 Error Codes

Width of text in pixels
Ptr to start of text

Number of characters

30401
30403
30410
30411
30420
30430
30431
30432
50433
30440
30441
30442
30450
30451
30452

QuickDraw IT has already been initialized.

QuickDraw II has not been initialized.
Screen memory has been reserved.
The rectangle specified is invalid.
The pixel chunkiness is not equal.
The region is already open.

The region is not open.

The region has overflowed.

The region is full.

The polvgon is already open.

The polygon is not open.

The polyvgon is too big.

Bad color table number.

Bad color number.

Bad scan line number.

Table R6=3: The Major Functions in the Window Manager Tool Set ($0E)

Function Stack

Description of

Function Name Number Parameters Parameter

BeginUpdate $1E TheWindow (L) Ptr to window record

CloseWindow $0B TheWindow (L) Ptr to window record

DragWindow $1A Grid (W) Drag resolution (0=default)
StartX (W) Starting X coord (global)
StartY (W) Starting Y coord (global)
Grace (W) Grace distance around bounds

BoundsRect (L)
TheWindow (L)

216 Windows and Craphics

Ptr to cursor boundary rect

Ptr to window record

Function Stack

Description of

Function Name Number Parameters Parameter
EndUpdate 31F TheWindow (L) Ptr to winaw record -
FindWindow 317 result (W) Location code for mouse-down
WhichWindow (L) Ptr to space for window ptr
PointX (W) X coord to check (global)
PointY (W) Y coord to check (global)
FrontWindow $15 result (L) Ptr to window record
GetContentDraw $48 result (L) Ptr to update subroutine
TheWindow (L) Pir to window record
GetContentOrigin $3E result (W) X coordinate of origin
result (W) Y coordinate of origin
TheWindow (L) Ptr to window record
GetDataSize $40 result (W) Data width
result (W) Data height
TheWindow (L) Ptr to window record
GetDefProc $31 result (L) Ptr to window def. subr.
TheWindow (L) Ptr to window record
GetFrameColor $10 result (L) Ptr to color table
TheWindow (L) Ptr to window record
GetFullRect $37 result (L)
TheWindow (L) Ptr to window record
GetInfoDraw $4A result (L) Ptr to infobar drawing subr.
TheWindow (L) Ptr to window record
GetInfoRefCon $35 result (L) RefCon for infobar drawing
TheWindow (L) Ptr to window record
GetMaxGrow $42 result (W) Maximum window width
result (W) Maximum window height
TheWindow (L) Ptr to window record

Reference Section 217

Function Stack Deseription of
Function Name Number Parameters Parameter
GetPage 846 result (W) Horizontal distance (page)
result (W) Vertical distance (page)
TheWindow (L) Ptr to window record
GetScroll $44 result (W) Horizontal distance (line)
result (W) Vertical distance (line)
TheWindow (L) Ptr to window record
GetWFrame $2C result (W) Window frame bit vector
TheWindow (L) Ptr to window record
GetWRefCon $29 result (L) Reference constant
TheWindow (L} Ptr to window record
GetWTitle S0E result (L) Ptr to title string
TheWindow (L) Ptr to window record
GrowWindow 518 result (W) New height
result (W) New width

HideWindow $12
MoveWindow $19
NewWindow $09
RefreshDesktop 839

SelectWindow 511

218 Windows and Graphics

MinWidth (W)
MaxWidth (W)
StartX (W)
StartY (W)
TheWindow (L)
TheWindow (L)
NewX (W)
NewY (W)
TheWindow (L)
result (L)
ParamList (L)
ClobRect (L)
TheWindow (L)

Minimum width of content
Maximum width of content
Starting X coord (global)
Starting Y coord (global)

Ptr to window record

Ptr to window record

X coord of upper-left corner
Y coord of upper-left corner
Ptr to window record

Ptr to window record

Ptr to window parameter table
Ptr to redraw rectangle

Ptr to window record

Function
Function Name ~ Nu mber
SetContentDraw $49
SetContentOrigin -~ $3F
SetDataSize 541
SetDelProc %32
SetFrameColor $0F
SetFullRect $38
SetInfoDraw 516
SetInfoRetCon $36
SetMaxGrow $43
SetPage $47
SetScroll $45

Stack

Parameters

ContDraw (L)
TheWindow (L)
xOrigin (W)
vOrigin (W)
TheWindow (L)
dataWidth (W)
dataHeight (W)
TheWindow (L)
DefProc (L)
TheWindow (L)
FrColorThl (L)
TheWindow (L)
FullRect (L)
TheWindow (L)
InfoDraw (L)
TheWindow (L)
InfoRefCon (L)
TheWindow (L)
maxWidth (W)
maxHeight (W)
TheWindow (L)
hPage (W)
vPage (W)
TheWindow (L)
hSeroll (W)
vSeroll (W)
TheWindow (L)

Description of
Parameter

Window update procedure

Ptr to window record
X coordinate of origin
Y coordinate of origin
Ptr to window record
Data width
Data height

Ptr to window record

Window definition procedure

Ptr to window record

Ptr to new color table

Ptr to window record

Ptr to zoom rectangle

Ptr to window record
Information bar procedure
Ptr to window record
Infobar reference constant
Ptr to window record
Maximum window width
Maximum window height
Ptr to window record
Horizontal distance (page)
Vertical distance (page)
Ptr to window record
Horizontal distance (line)
Vertical distance (line)

Ptr to window record

Reference Section

219

Function Stack Description of
Function Name Number Parameters Parameter
SetSysWindow $4B TheWindow (L) Ptr to system window
SetWFrame 52D WFrame (W) Window frame bit vector
TheWindow (L) Ptr to window record
SetWRefCon %28 WRefCon (L) New reference constant
TheWindow (L) Ptr to window record
SetWTitle 0D TitlePtr (L) Ptr to new title string
TheWindow (L) Ptr to window record
ShowWindow $13 TheWindow (L) Ptr to window record
SizeWindow $1C NewWidth (W) New width of window
NewHeight (W) New height of window
TheWindow (L) Ptr to window record
Start Drawing 34D TheWindow (L) Ptr to window record
TaskMaster 31D result (W) Event code
EventMask (W) Event mask
TaskRecord (L) Ptr to task record
TrackGoAway $18 result (W) Boolean: was goaway selected?
StartX (W) X coordinate (global)
StartY (W) Y coordinate (global)
TheWindow (L) Ptr to window record
TrackZoom $26 result (W) Boolean: was zoom selected?

220 Windows and Graphics

StartX (W)
StartY (W)

TheWindow (L)

X coordinate (global)
Y coordinate (global)

Ptr to window record

Function

Function Name Number

Stack
Parameters

Description of
Parameter

WindShutDown 503
WindStartup $02
ZoomWindow 827
Table R6—4:

[no parameters|
UserID (W)

TheWindow (L)

Window Manager Error Codes

ID tag for memory allocation

Ptr to window record

$0E01 The first word in the NewWindow parameter list is not the correct
table size.

$0E02 The window record could not be allocated.

$0E03 Bits 14-31 in the TaskMask field of the task record are not zero.

Table R6-5: Useful Functions in the Font Manager Tool Set ($1B)

Function Stack Description of

Function Name Number Parameters Parameter

ChooseFont 516 result (L) ID for selected font
currentID (L) ID of current font
famSpecs (W) Familv specification

InstallFont S0E desiredID (L) Desired font ID
scaleword (W) Scaling factor

FMShutdown 303 [no parameters]

FMStartup 502 SysFontName Ptr to system font name
(L)

UserlD (W)

DPAddr (W)

ID tag for memory allocation

Pointer to 1 page in bank 0

Reference Section 221

Function Stack Description of

Function Name Number Parameters ~ Parameter

LoadSysFont 513 [no parameters)]

SetPurgeStat S0F fontID (L) ID for font to purge
purgeStat (W) Purge status word

Table R6-6: Font Manager Error Codes

$1B01
$1B03
51804
$1B05
$1B06
$1B07
S1B08
$1B09
$1BOA
$1BOB

The Font Manager has already been started up.
The Font Manager is not active.

The font family was not found.

The font was not found.

The font is not in memory.

The system font cannot be made purgeable.
Illegal family number.

[llegal size.

[llegal name length.

FixFontMenu has never been called.

222 Windows and Graphics

———-

Listing 6-1: How to Create and Display a Window

DefineWind START

PHA ;Space for result

PHA

PushPtr TheWindow ;Pointer to window record
_HewWindow

PopLong WindowPtr ;Save pointer to window record
RTS

i WMindow parameters:

TheWindow DC 12'WindEnd-TheWindow! 1S5ize of table
Dc I1*%1101110110100101° sjwindow frame type
DC [4'TheTitle! sPointer to window title
DC 14100 srefcon
Dc 1'40,4,182,608" ;zoom rectangle
DC 14100 scolor table (0 = default)
DC 119,01 ;document offset
DC 1'1024,960'" iheight ,width of data area
DC ['g,0! sheight ,width max window
DC ['9,12! svert, horiz line movement
DC 11144 ,592! svert, horiz page movement
DC 141! ;info bar refcon
DeC [avy2] ;info bar height
DC 140! ;frame defproc (0 = standarc
Dec l4'DolnfoBar! iinfo bar defproc
Dc I4'WindUpdate! scontent defproc
Dc 1'40,4,182,608" jContent region rectangle
oc 141-1" sAt the front
DC 14'0! jStorage (use MM)

WindEnd ANDOP

TheTitle DC I1'4 GS Window' iWindow title
WindowPtr DS - iPointer to window
END

3 TaskMaster calls this routine whenever an update
; event occurs. It is responsible for redrawing the
3 contents of the window.

Reference Section 223

WindUpdate START

3 Make the data bank equal the code bank so you
; can use absolule addressing:

PHB
PHK
FLB ;data bank = code bank

linsert window drawing code here]

-

PLB
RETL ;Do not use RTS!!

END

TaskMaster calls this routine when it needs to
draw the interior of the information bar.

B T

See explanation in listing B-2.

DolnfoBar START

i [insert drawing code herel

; Remove 12 bytes of input parameters from the stack:

LDA 2,58 :Move return address

5TA 14,5 i up by three long words
LDA p
STA 13595

cLC iRaise stack pointer by
TSC ;i three long words.

ADC #12

TCS

RTL

END

Listing 6-2: A Procedure for Drawing an Information Bar

This is an information bar drawing procedure. It centers a
text string pointed to by the infobar refcon in the bar.

stack (pointer to infobar rectangle, the information bar refcon,

1
i TaskMaster calls InfoProc by pushing three long words on the
i and a pointer to the window record), then performing a JSL.

224 Windows and Graphics

i On exit, these parameters must be removed by moving the
; return address (and stack pointer) up by 12 bytes.

i Mote: top, left, bottom, right are defined in Standard.Asm.

InfoProc START

: These are the direct page addresses after aligning the new
i direct page with the stack:

0ld_DP EQU
0ld_DB EQU
ReturnAddr EQU
IB_WindPtr EQU
IB_RefCon EQU
|B_RectPtr EQU

$01 ;0ld direct page

0l1d_DP+1 :01ld data bank

Dld_DB+2 1JSL return address

ReturnAddr+3 iPointer to window

IB_MindPtr+4 ;Reference constant (string pointer)
IB_RefCon+4 iPointer to infobar rectangle

PHD ;S5ave direct page

PHB ;Save data bank register

PHK ;5et data bank = code bank so we
PLB : can use absolute addresslng
TSC

TCD ;Align new d.p. with stack
LDY #left

LDA [IB_RectPtrl,¥ ;Get left edge

STA IB_Temp

LDY #right

LDA [IB_RectPtrl,Y :Get right edge

SEC

SBC [B_Temp iCalculate width of rectangle
PHA

PHA sRoom for result

PushLong IB_RefCon ;Pointer to text string
_StringMidth

PLA ;This is the width of the text
STA LB _Temp

PLA 1Get width of rectangle

CMP IB_Temp sWMider than text?

BCS GEIMargin s¥Yes, so branch

LDA #0 ;Flush with left side

BRA GetMargini

Reference Section 225

GetMargin SEC
SBC I1B_Temp
LSR A
GetMargini STA IB_Temp
LDY #left
LDA [IB_RectPtirl,Y
ADC IB_Temp
PHA
LDY #bottom
LDA (IE_RectPtrl.Y
SEC
SBC 2
PHA
_MaveTeo
PushLong IB_RefCon
_DrawString
PLB
PLD

;Calculate remaining space in rect
;Divide by 2 to get left margin

;Add margin to left edge position
:¥-coordinate for MowveTo

;Get bottom edge

;{room for descenders)
s¥Y-coordinate for MoveTo

;Position the drawing pen
;Push refcon pointer
;Draw string pointed to by refcon

sRestore data bank register
iRestore direct page

; Remove parameters from stack before leaving. This 1s done
; by moving the 3-byte return address, and the stack pointer,

up by the size of the parametiers,

LDA
STA
LDA
STA

-
4,5
5
3,5

— s =k [

CcLC
TSC
ADC
TCS

#12

RTL
IB_Temp DS 2

END

Listing 6-3:

then ending with RTL.

:Maove return address
; up by three long words

;Raise stack pointer by
; three long words.

;(called with JSL)

How To Define an STR Macro

MACRO

&lab STR ttext

tlab DC [1'L:8text!
Dc C"atext" sASCII
MEND

226 Windows and Graphics

;Length byte

characters

Listing 6-4: Using StringWidth To Center a Line of Text

: Enter this subroutine with & line number in Y.
; The pointer to the text string must be in A (high) and X (low).

left GEQU 2
right GEQU B

Centerlt START
STY LinePaos :Save vertical

;:Calculate width of string:

PHA jspace for result
PHA ;push pointer (high)
FPHX ipush pointer (low)

_StringWidth
Poplord TextWidth

;Calculate width of content region:

PushPtr PortRect

_GetPortRect 1Get content rectangle
SEC

LDA PortRect+right ;Right side minus

SBC PortRect+left : the left side.

iLeft margin is 1/2+(Windowlidth-TextWidth) from left of PortRect:

SBC TextWidth

LSR A ;Divide by 2

CLC

ADC PortRect+left sAdd to left side
PHA ;Horizontal positiaon
Pushlord LinePos iVertical position
_MoveTo

PushPtr TheText

_DrawString ;Draw the stiring
RTS
LinePos DS 2 ;Vertical line position

Reference Section 227

FortRect DS 8 ;iContent rectangle
TextWidth DS 2

EMND

Listing 6-5: A Subroutine for Displaying Text in All Sixteen Colors

i Use this subroutine in 320x200 mode sc that you see all
i 16 colors. (Do this by setting VidMode to $00 and

3 AMaxClamp to 320 in Standard.Asm.)

TextColor START

PushWord #3

LDA #10

STA VertPos

PHA

_MoveTo ;Position on first line

; Just for fun, draw the text in boldface:

FushlWord #%X00000001 ;5et the bold bit

_SetTextFace

LDXx #0 1Start with color #0
ColorText PHX

PHX

_SetForeColor ;Set foreground color

PushPtr TheText
_DrawString sPrint the text

;Move to next line:

PushWerd #3 ileft side

cLC

LDA VertPos

ADC #9 i(height of line)
STA VertPos

PHA ;line number
_MoveTo

PLX

INX

CPX 16 ;At last color yet?
BNE ColorText sNo, so branch
RTS

228 Windows and Graphics

VertPos DS 2
TheText STR 'The gquick brown fox jumped.'

END

Listing 6-6: How To Define and Use a QuickDraw Polvgon

DefinePoly START

i First move the pen to the desired position:

PushWord #100 ihorizontal
PushWord #120 svertical
_MoveTe
i «.. then open the polygon record:
PHA ;jspace for result (handle)
PHA
_OpenPoly
PopLeng PolyHndl ;Pop the polygen handle

i «.. then draw the outline of the polygon with Line or LineTo
3 (this defines a pentagon):

Pushbord #50
PushWord #0
_Line
PushlWord #25
PushlWord #-25
_Line
PushWord #-50
Pushlord #-25
_Line
PushlWord #-50
Pushblord #25
_Line
PushWord #25
PushlWord #25
_Line

i «.. then close the polygon record:

_ClosePoly
RTS

Reference Section 229

; To display the polygon, call ShowPoly:
ShowPoly ENTRY

PushLeong PolyHndl
_PaintPoly i(or Frame, Erase, Invert, Fill)
RTS

; To permanently dispose of the polygon, call ByePoly:
ByePoly ENTRY

PushLong PnlyHndl

_KillPoly
RTS
PolyHndl DS 4 :Handle to polygon record
Y peiyg
END

Listing 6-7: The TextReader Program

*Iil'll'ﬂl‘liill‘ll‘ll.‘llll‘llﬂli"‘lllllfﬂl‘ll

* TextReader *
- -
+» This program demonstrates how to deal +
#« with windows that have scroll bars. *
lllillll'l'ﬁlll'll*.l‘llllllllllflilili!ll
LIST OFF
SYMBOL OFF
ABSADDR ON
INSTIME ON
GEN ON
KEEP WIND ;0bject code file
mMCOPY WIND.MAC iMacro file
MyCode START

; Direct page global equates:

TextHndl GEQU $0 ;s LONG
TextPtr GEQU $4 +LONG

Using GlobalData
Using StartData

JSR DoStartUp

230 Windows and Graphics

i Define and display the menu bar:

i Save the

PushLong #0
PushPtr Menul2
_NewMenu
PushWord #0
_InsertMenu

PushLong #0
PushPtr Menul1
_NewMenu
PushWord #0
_InsertMenu

Pushlord #1
_FixAppleMenu

PHA
_FixMenuBar
PLA
_DrawMenuBar

current direct page

TDC
STA MyDP

_InitCursor

; Ask the user for the name of
; use the S5FGetFile dialog box

GetName

PushWord #120
Pushlord #40
PushPtr SFPrompt
PushPtr FilterProc
PushLong #0

PushPtr ReplyRec

_SFGetFile

LDA good

BNE Loadlt

JMP DoShutDown

;Add DA=s to Apple menu

jAdjust size of menu

+Turn on arrow cursor

the file to open. To de this,
(see chapter 10):

X
iy

iprompt

;filter procedure
i(no file type list)
ireply record

1 Get the result
;Branch if it was "open"

; Load a text file into memory. This is done using
i ProDDS 16 commands (see chapter 10):

LoadIt

_OPEN OpenParms
LDA refnum
STA refnumi

Reference Section

STA refnum2
STA refnum3
STA refnum4d

_GETEOF EOFParms

PushLong #0

PushLong FileSize

PushWord MylD
Pushlord #$8000
PushLong #0
_NewHandle
FPoplLong TextHndl

LDA [TextHndl]
STA TextPtr

STA data_buff
LDY e

LDA [TextHndl1,Y
STA TextPtr+2
STA data_buff+2
LDA FileSize
5ThA request

LDA FileSize+2
STA request+2

_MEWLINE NLParms
_READ ReadParms

_CLOSE CloseParms

ispace for result
;Push size of file

sLocked
j(means nothing here)

;Save handle to text area

;dereference the handle

;Read data in to TextPtr block

;jCalculate size of document (in pixel lines). This is done b
; multiplying the number of Carriage Returns by 9 {the height

1 of a line):

STZ DocSize

LDY #0
GetSize LDA [TextPtrl,Y

AND #37F

CMP #30D

BNE Skiplnc

CLC

LDA DocSize

aDC 9

STA DocSize
Skiplnc INY

CPY FileSize

BNE GetSize

232 Windows and Graphics

1Get next character

sEnd of line?
;No, so branch

39 pixels per line

;At end of file?
sNe, so branch

CLC

LDA DocSize
ADC #20
S5TA DocSize

iProvide a small bottom margin

i Clip to max depth of 16K ($4000) because of

i QuickDraw boundary restrictions:

; Define and display the window:

Showllind

; Change the title of the window to

SetTitle

EvtLoop

CMP #$3FFF-9
BCC Showlind
LDA #$3FFF-9
STA DocSize

PHA

PHA

PushPtr MainWindow
_NHewlindow

PoplLong WindowPtr

PushPtr Filename
Pusthng WindowPtr
_SetlTitle

PHA

PushWord #$FFFF
PushPtr EwventRec
_TaskMaster

PLA

CMP #wlnMenuBar
BEQ DoMenu

cmp #winGoAway
BHE EvilLoop

PushLong TextHndl
_DisposeHandle

PushLong WindowPtr
_CloseWindow
BRL GetName

;Larger than max?
:Noe, so branch

;Clip to max (subtract 2 to avoid

3 adverse effecls on last line)

jSpace for result

;Pointer to window record

;Save pointer to window record

the name of the file!

1All events

:Get result code

:Menu item selected?
;¥Yes, so branch

sIn close box?
;lgnore everything else

iFree up text block

;Delete the window
;6o get another file

Reference Section

233

s Handle menu selections:

DoMenu LDA TaskData
AND #$00FF ;Convert to 0 base
ASL A ;%2 to step into table
TaX
JMP {MenuTable, X) ;jCall menu item handler
MenuTable DC I'DoAboutl’
oc 1'DeQuitl!
DoAboutl JSR FixMTitle
BRL EvtlLoop
DoQuitl JSR FixMTitle
JHMP DoShutDown
FixMTitle Pushlord #False sHighlighting off
PushWord TaskData+2 ;Get menu ID
_HiliteMenu
RTS
END

;3 TaskMaster calls this routine whenever an update
; event occurs. It is responsible for redrawing the
; contents of the window.

WindUpdate START
Using GlobalData

; Make the data bank equal the code bank so we don't have
to use absolute long addressing:

e

PHB
PHK
PLB :data bank = code bank

3 Switeh to the direclt page the application uses so
3 that we can use TextPtr:

PHD :Save current DP
LDA MyDP
TCD 3+Switch to our DP

Get the current wvalue of the PortRect. PortRect is
i the rectangle describing the content region.

PushPtr PortRect
_GetPortRect

234 Windows and Graphics

3+ Scan for the first line in the document that will
; appear in the window:

FindStart

FS0

Fs1

Fs2

LDA #8

STA YPosition
LDY #$FFFF
PHY

BRA FS0

LDA [TextPtrl,Y
PHY

AND #57F

CcMP #30D

BNE FS1

cLE

LDA YPosition
ADC 79

STA YPosition
LDA YPosition
CmP PortRect+top
BCS FS2

PLY

INY

CPY FileSize
BHE FindStart
PLD

PLB

RTL

PLY

INY

PHY

Pushlord #2
Pushlord YPosition
_MoveTo

PLY

;Coord of line #0

:Get character

sEnd of line?
1Mo, so branch

;Add height of line

3;Get position 1n deocument
;Past the top of PortiRect?
;Yes, so we're ready to start

sAt end of file?

:No, so branch

iMove to 1st character of line

iMove to left edge

; Determine the number of bytes in the line
; so0 that we can draw them all at once with DrawText:

NextLine

STY StartPos
STZ Counter

Reference Section 235

ShowlL ine LDA [TextPtrl,Y

AND #37F

CMP #350D

BEG GotLine
INC Counter
INY

CPY FileSize
BNE ShowL ine
DEY

GotLine PHY

LDA Counter

BEG GotLinel

CLC

LDA StartPos

ADC TextPtr

TAX

LDA TextPtr+2

ADC #0

FHA

PHX

PushWord Counter

_DrawText
GotLinel JSR CRLF

;Get character

;Strip high bit
;At end of line?
;¥Yes, so branch

;At end of file?
sNe, so branch

;CR by itself
iYes, so don't draw anything

sPush 5tarting position
; by adding offset to TextPtr

iHumber of bytes to draw

;Move to next line

3 Check to see if we've gone past the bottom of the window:

PushPtr PenPos

_GetPen

PLY

INY

CPY FileSize

BEG Exit

LDA PortRect+bottom

cLC

ADC #9

CHMP PenPos+wv

BCS NextlLine
Exit PLD

PLE

RTL

236 Windows and Graphics

;Get current position
;Get buffer position back

At end?
:Yes, so branch

iGet bottom of portRect
;go one line further
iPen reached bottom yet?
;sNo, so branch

:Restore DP

Do not use RTS!!

PortRect DS g jrectangle

StartPos DS 2
Counter DS 2
END

LR R e R E R R R R R R R R R S R R S R R R
* This is the filter procedure for SFGetFile. »
¢+ It is explained in chapter 10. ¥
(B R R R R R R E R R R R R R R S R

FilterProc START

PHD ;Save direct page

TsC

TCD ;Align d.p. with stack

LDY 16 ;0ffset to file type code

LDA [s61,Y

AND #$00FF i(use low byte only)

CMP #$B0 ;SRC file?

BEQG FPO s¥Yes, so branch

cmp #3504 3 TET file?

BEG FPO ;¥Yes, so branch

LDA #1 31 = display/not selectable

BRA FiP
FPO LDA #2 ;2 = display/selectable
FP1 PLD ijRestore d.p.

STA 8,5 ;Save the result

LDA 2,5 sMove 3-byte return

STA 6,5 ; address up by 4 byles.

LDA 1,5

STA 558

TsC ;Add 4 to the

CLC ; stack pointer.

ADC #4

TCS

RTL

END

* Move cursor to left side of next line:

CRLF START
Using GlobalData

Reference Section 237

PushPtr PenPos

_GetPen ;Get current pen position

Pushiord #2 ;jleft edge

CLC

LDA PenPos+wv

ADC 9 :9 18 the he;ght of the system font
PHA ;New vertical position

_MoveTo

RTS

END

COPY STANDARD.ASM ;Standard startup/shutdown

GlobalData DATA

3 Window parameters:

WindowPtr DS 4 ;Pointer to window
MyTitle DC 1o sNull name; filled in later
MainWindow DC I2"WindEnd-Mainkindow!' :51ze of table
DC ['%1101110110100101° iwindow frame type
DeC I4'MyTitle! :Pointer to window title
DC 140! srefcon
DC 1'40,4,182,608" ;zoom rectangle
DC 141! scalor table (0 = default)
DC [vo,0! idocument offset
DocSize DC ['1024,960" iheight,width of data area
DC 1'0,0!' ;height ,width max window
Dc 119,12 svert, horiz line movement
PageJumps DC 11144 ,592! ;vert, horiz page movement
DC 40! :info bar refcon
DC [an 2! syinfo bar height
pc 14'0! ;frame defproc (0 = standard)
pc 1410 sinfo bar defproc
DC 14'WindUpdate! ;content defproc
DC 1'40,4,182,608" ;Content region rectangle
DeC 14r-11 sAt the front
nc 140! ;Storage (use MM)

WindEnd ANDOP

s Menu/item lists:

Menul1 DC C'> @\N1X',H'0D? ;Apple menu

ocC C'##fbout this program ...\N2B&V',H'0D'
Menul 2 DC C'> File \N2',H'0D! sFile menu

DC C'##Quit\N257+#Qq',H'0D!'

DC cr.n ;End of menu

238 Windows and Graphics

MyDP DS 2 ;Application's direct page
YPosition DS 2

PenPos Ds 4 ;Current pen position

» SFGetFile data:

SFPrompt STR 'Select a file to view:!

ReplyRec ANOP

good Ds 2 jNon-zero 1f open pressed
filetype DS 2 ;ProDOS file type

auxtype DS 2 sProD0OS auxiliary file type
FileName Ds 16 ;Name of file in prefix 0/
fullpath DS 129 jFull pathname

; Data for file 1/0 operations:

OpenParms ANOP

refnum DS 2
DC I4'"FileName'
Ds 4

EOFParms ANOP
refnuml DS 2
FileSize DS 4

HLParms ANOP

refnum2 DS 2
oc 1200 ;disable newline read mode
DS 2

ReadParms ANOP

refnum3 DS 2
data_buff DS 4 ;:Pointer to data area
request DS 4

DS 4

CloseParms ANOP
refnumd DS 2

s:Event Record for TaskMaster:

EventRec ANOP
What Ds 2 ;:Event code
Message Ds 4 sEvent result

Reference Section 239

When DS 4 ;Ticks since startup
Where DS 4 iMouse location (global)
Modifiers DS 2 ;Status of modifier keys
TaskData De 4 ;TaskMaster data
TaskMask DC 14'$00001FFF! ;TaskMaster handles all

END

240 Windows and Graphics

CHAPTER 7

Using Pull-down
Menus

One of the difficult decisions a programmer faces when developing an application
is how to design the command interface between the user and the application. One
school of thought says a user should be forced to memorize command names which
must be typed in from the keyboard. The advantage of this common technique is
that once the commands are mastered, they can be entered very quickly. The two
main disadvantages are that it can take a long time to memorize the commands and
that commands are easily forgotten if a program is not used for a while.

The other extreme is to insist that the user must always select a command from
a displayed list of possible choices. Such a list is called a menu. This technique is
popular with users who are just learning how to use a program, because all the
commands are immediately obvious. The disadvantage is it becomes tedious to call
up and hunt through a menu once you have mastered the program and know exactly
what you want to do.

If vou follow Apple’s standard user-interface guidelines, vou will implement the
menu technique with s applications that use the super high-resolution desktop.
To define menus and handle menu activity in standard ways, use the Menu Manager
tool set (tool set 15).

Despite its name, the Menu Manager does make concessions to the command-
driven interface because vou can quickly select certain menu items by pressing a
character key while holding down the Open-Apple (Command) key. Such a key is
called a keyboard equivalent.

The names of each menu defined by a Gs application that uses the Menu Manager
appear in a rectangular menu bar across the top of the graphics sereen (see figure
7-1). A user can see the contents of a particular menu by moving the mouse cursor
over that menu’s title and holding down the mouse button. This causes a rectangle
containing the names of all the items in the menu to appear below the menu’s title.
(Because the effect is like pulling down a window blind, a ¢s menu is called a pull-
down menu.) The items are stacked vertically,

241

Figure 7-1: An Apple IIcs Menu Bar and a Pull-down Menu

ij[: i
Paste 4V ||

Once the menu has been pulled down, a user can select an item by moving the
mouse down or up to highlight the appropriate item name and then releasing the
mouse button. The user can also inspect an adjacent menu by moving the mouse
(with the button still down) to the left or right while it is in the menu bar area.

This chapter covers implementing pull-down menus in Gs applications, creating
and displaying menu bars, and controlling the appearance of individual items inside
menus.

STARTING UP AND SHUTTING DOWN THE MENU MANAGER

Just as with any tool set, the start-up funetion must be called before the Menu
Manager can be used. The function name is MenuStartup. Before calling Menu-
Startup, however, you must start up QuickDraw, the Event Manager, and the
Window Manager—the Menu Manager uses these tool sets to perform some of its
functions.

Here is how to start up the Menu Manager:

Pushlord MylD iProgram ID (from MMStartup)
PushWord DPAddr iAddress of direct page area
_MenuStartup

DPAddr points to a one-page area in bank zero of memory that the Menu Manager
uses for direct page storage. Use NewHandle to allocate this space.

MenuStartup performs all the housekeeping needed to get the Menu Manager
up and running. This function creates an empty system menu bar, makes it the
current menu bar, and displays it at the top of the screen.

242 Using Pull-down Menus

Just before your program ends, call MenuShutDown to free up the memory areas
used by the Menu Manager. It requires no parameters and returns no results on
the stack.

CREATING A MENU

To create a menu, use the NewMenu function. It requires only one parameter—a
pointer to a menu/item line list—and returns a handle to the menu record:

PHA jspace for result (long)
PHA

PushPtr MenulList :Pointer to menu/item list
_HNewMenu

PoplLong MenuHndl :Pop handle to the menu

Make sure you save the handle returned by NewMenu because you will need it
when you add the menu to the menu bar with InsertMenu. Note that if the handle
is 0, the menu could not be allocated, either because there is no memory available
or because the menu/item line list is invalid.

The menu/item line list is a series of lines, each followed by a null (ASCII $00)
or a carriage return (ASCII $0D). A typical list looks something like this, in assembly
language format:

TheMenu DC C'>> Edit “N3',I1'0!
DC C'##Undo\N256V!',I11'0"
DC C'##Cut\N257', 110!
DC C'##Copy\N258',[1'0!
DC C'##Delete\N259',11'0"
DC g1.!

The first line in the list defines the title for the menu; the first character (=) informs
NewMenu that this is a menu title, not an item name. It is followed by another >
character, which simply acts as a place holder for the length of the string. (The
Menu Manager fills in the length when you call NewMenu.) The menu title itself
comes next, terminated by a backslash and some special characters defining the ID
number for the menu. More information about these special characters is given
below.

Notice that there is one space to the left and one to the right of the title name.
This is not required, but it provides aesthetic gaps between adjacent menu titles in
the menu bar.

Subsequent lines define menu items in the order in which they are to appear in
the menu. Each line begins with an item character (#) that must be different from
the menu title character. Following it are a dummy place holder character, the
name of the item, and a terminating backslash followed by special characters.

Creating @« Menu 243

The list is terminated by a character (.) that is different from the menu item
character but could be the same as the menu title character. In fact, if you are
defining several menu/item lists in sequence, the menu title character for the next
list can be used as a terminator for the current list. Just be sure to follow the last
list with a terminator character.

By the way, there is nothing magical in the three characters used in this example.
Any characters may be used, as long as the menu item character is different from
the menu title character and the terminator character is different from the menu
item character.

Following each title and item name in the list is a backslash character (\). The
backslash signifies the end of the menu or item name and the beginning of a series
of special characters. In the example, the special characters are of the form “Nxxx”
where “xxx” represents a decimal ID number for the title or item. Other special
characters you can use are summarized in table 7-1. Most of them affect the
appearance of the text in the line.

The program in listing 7-1 shows how to create three standard types of menus:
an Apple menu, a File menu, and an Edit menu, each using Menu Manager
functions,

ID Numbers

Every menu title name must be associated with an ID number from 1 to 65535.
None of these numbers are reserved, but each menu title must have a unique
numher.

The range of 1D numbers permitted for item names is narrower. The numbers
from 1 to 249 are reserved for use by desk accessory items. The numbers from 250
to 255 are reserved for special editing items and a Close item, which are often
needed by desk accessories:

Undo 250 Cancel last editing operation

Cut 251 Cut selected text; put it on the clipboard

Copy 252 Copy selected text to the clipboard

Paste 253 Transfer text from the clipboard to the document
Clear 254 Cut selected text; do not put it on the clipboard
Close 255 Close the active window

(The clipboard is a data area maintained by the Scrap Manager. It facilitates the
movement of data within an application or from one application to another.)

The first five items should be placed in a menu called Edit. The Close item
should be placed in a menu called File.

244 Using Pull-down Menus

Table 7-1: Special Characters for Menu/Item Lists

Special

Character Meaning

\ Beginning of special characters

* Kevboard equivalent characters follow
{primary followed by alternate)

B Boldface the name

C Mark character follows

D Disable (dim) the name

H Two-byte binary 1D number follows
(30001 to $FFFF, low-order byte
first)

1 Italicize the name
Decimal ID number follows (1 to 65335)

U Underline the name

v Put a dividing line under the name
{but do not use a separate item)

X Use color-replace highlighting

NOTE: All these special characters may be used with item names. Use only\, D, H, N, and X with menu
titles.

When these 1D numbers are assigned to these items, and a TaskMaster event
loop is used, the special items will automatically be passed to an active desk accessory
for processing. See chapter 9 for more information on desk accessories.

The rest of the 1D numbers, from 256 to 65535, may be used by the application
in any way it sees fit. Keep in mind, however, that each menu item must have a
unique ID number, although permanently disabled items may share the same 1D
number.

When vou are defining a series of menus, von might want to number the items
consecutively from 256. This makes it possible to access the subroutine to be called
when the item is selected by doubling the low-order byte of the item number and
using the result as an index into a table of two-byte subroutine addresses. The

Creating a Menu 245

standard Edit, File, and Desk Accessory items, which have numbers below 256,
would be treated as special cases.
Here is a code fragment that illustrates this technique:

: Enter here with the menu item number in A:

CMP #2586 ;Standard Edit, Close, or DA7
BCC DoSpecial i1Yes, so branch
AND #s300FF ;lsolate low-order byte
ASL A ;Double to get index into table
TAX
JMP (ITEM_TBL,X) 1Pass control to ttem handler
DoSpecial NOP jHandle special cases here
RTS
ITEM_TBL DC [2'Doltem256' 1Address of item #256 handler
DC 12'Doltem257! 1Address of item #257 handler
DC 12'Doltem258! ;Address of item #258 handler

You can use the H special character to specify the item or menu number in binary,
rather than decimal, form, If you use the H, follow it with the two-byte binary
number, low-order byte first. For example, to assign an item number of $0103,
specify an item line of the form:

DC C'##The Item\H' ,H'03 01',11'0"

You could also use 1280103 instead of H'03 01,

The Appearance of an Item

Several special characters can be used to affect the appearance of an item in a menu.
The program in listing 7-2 indicates how to use them.

Three special characters are available for selecting the typeface of an item name:
B (boldfaced), I (italicized), and U (underlined). For example, to attach all three
faces to an item with an ID of 323, put the following line in the menu/item line list:

DC C'##My Item\N323BIU',l11'0!

Note, however, that the standard system font used by the Gs cannot be underlined.
Furthermore, current versions of QuickDraw do not support italics.

To disable an item, use the special character D. A disabled item is dimmed in
the menu and cannot be selected when the user pulls down the menu. You should
disable an item whenever the action associated with it is not appropriate in the
current environment. For example, if you have an item called Open Window, and
the window is already open, vou should disable the item.

246 Using Pull-down Menus

Dividing lines, used to separate groups of related items in a menu, should always
be disabled. Here is how to define a disabled dividing line in a menu/item line list:

DC C'##-\N324D",11'0"

The Menu Manager interprets a single hyphen as a row of hyphens extending across
the width of the menu.

You can also create a dividing line with the V special character. This tvpe of
dividing line is really just an underline and so does not use up the space of an entire
item. The main advantage of using it instead of a true dividing line is that you can
fit more menu items in a menu.

The X special character denotes a special form of highlighting to be used when
a menu title or a menu item is selected. The default highlighting method is called
XOR, which causes a name to be inverted. When an X special character is specified,
color-replace highlighting is used instead of the XOR method; this method causes
only the white background of a colored object to be inverted.

You will use color-replace highlighting for a menu whose title is the colored Apple
logo. By convention, this menu appears on the left side of a menu bar and contains
the names of all the active desk accessories in the system and an “About...” item
that displays information about the program. To define the title for the standard
Apple menu, use the following line:

DC C'>>@\N1Xxt',11'0!

The Menu Manager substitutes the colored Apple logo for the @ character, as long
as there are no additional spaces on either side of the menu title character (@).

Kevboard Equivalents

As you will see later in this chapter, a user may select some menu items by pressing
a character key while holding down the Open-Apple modifier key. Use the * special
character to assign two kevboard equivalents to a menu item. The two characters
immediately following the * are the primary and alternate keyboard equivalents.
The primary character is shown to the right of the item name when the menu is
pulled down.

If the primary kevboard equivalent is an alphabetic character, it should be in
upper case. The alternate equivalent should then be set to the corresponding lower-
case character. Here are some examples:

DC C'##Cut\N256+Xx',I1'0"'
DC C'##Help\N303+%/" 110!

Notice the two standard keyboard equivalents for a help item. The primary character

is ? and the alternate is /. Because these two characters are associated with the same
key, help will arrive, notwithstanding the status of the Shift key.

Creating a Menu 247

Marking Items

The final special character is C. It is used to mark an item by placing a special
character to the left of its name in a menu. By convention, an item is to be marked
only if a feature associated with it is active, or on. For instance, if you have a menu
of font sizes, the one that is currently active should be marked and the others
unmarked.

Here is an item line defining an item marked with the character x:

DC C'##Underline\N322Cx"', 110!

A more common mark character is the checkmark (ASCII 18), but yvou cannot put
it directly into item lines because it is not a standard keyboard character. Once the
menu has been defined, you can set the mark character to a checkmark with the
CheckMItem function (see the section below on “Checking and Marking”).

CREATING THE MENU BAR

Once you have defined a series of menus with NewMenu, you are ready to add
them to the system menu bar. To do this, use the InsertMenu function:

PushLong MenuHndl ;Handle to menu to be inserted
PushWord #0 iInsert at left side of menu bar
_InsertMenu

The second parameter passed to InsertMenu is the ID of the menu after which the
menu whose handle is MenuHndl is to be inserted. If the number is 0, as in the
example, the menu is inserted before the first menu in the menu bar. The easiest
way to add a group of menus to the menu bar is to insert them in order from right
to left, using a 0 ID parameter each time.

If your menu bar includes an Apple menu, defined by a >>@\N1X line in the
menu/item line list, you should add the names of all the active desk accessories to
it, at least if the applications plans to support accessories. Do this using the Fix-
AppleMenu function:

PushWord #1 sMenu ID
_FixAppleMenu

The parameter passed to FixAppleMenu is the 1D number of the menu to which
the names of the desk accessory items are added. The desk accessories are given a
consecutive set of ID numbers, beginning with 1. ID numbers from 1 to 249 are
reserved for use by desk accessories; when TaskMaster determines that you have
selected a desk accessory item, it automatically opens the desk accessory for vou.
See chapter 9 for more on desk accessories.

Once all the menus have been added to the bar, you must call FixMenuBar to
permit the Menu Manager to calculate the height of the menu bar and menus and

248 Using Pull-down Menus

the maximum width of each menu. The Menu Manager needs this information so
that it can draw the menu bar properly. FixMenuBar returns a parameter, the height
of the menu bar, so vou call it as follows:

PHA ;space for result
_FixMenuBar
PLA ipop height of menu bar

The application probably will not need to know the height of the menu bar, so you
can discard the result. You must call FixMenuBar every time you change an item
name or menu title so that the Menu Manager can adjust its internal record of the
menu dimensions accordingly.

You are now ready to display the menu bar on the screen. For this, use
DrawMenuBar—it requires no parameters.

The program in listing 7-1 above illustrates how to create and display a menu

bar.

Changing the Name of a Menu
If you wish to change the name of a menu after it has been defined, use Set-
MenuTitle:

PushPtr HewTitle ijpointer to name string
PushWord #258 iMenu ID code
_SetMenuTitle

NewTitle STR 'ANewTitle!

NewTitle is a string that is preceded by a length byte. Call DrawMenuBar to redraw
the menu bar after changing the name of a title.

CHANGING ITEM ATTRIBUTES

An explanation of how to use special characters in the menu/item line list to set the
initial appearance of a menu item was given earlier in this chapter. You can also
change an item’s appearance, or its name, after the menu has been created, using
several Menu Manager functions. Those functions are the subject of this section.

Changing the Name

To change the name of an item, use SetMItem or SetMItemName. SetMItem
requires two parameters, a pointer to the new item line and the 1D of the item to
be renamed:

Changing Item Attributes 249

PushPtr HewlL ine :Pointer to new item line
PushiWord #256 iitem 1D

_SetMlitem

RTS

MewLine DC C'##A Different Name', K 11'0"

The first two characters in the string for the new name (## in the example) are
always ignored, as are any characters following a \ character, and the \ character
itself. Thus, the new item name will have the same special attributes as the one it
is replacing.

You can also use SetMItemName to change the name of an item:

PushPtr HNewName iPointer to new string
PushWord #2586 ;item 1D

_SetMltemName

RTS

HewName STR 'A Different Name'

In this case, the first parameter is a pointer to a standard string. All other item
attributes, such as text style and kevboard equivalents, remain unchanged.

When vou change the name of an item in a menu, the width of the menu may
change. As a result, vou must call CaleMenuSize to permit the Menu Manager to
recalculate the width:

PushWord #0 +0 means: calculate default width
Pushiord #0 30 means: calculate default height
PushWord #256 ithis is the menu [D
_CalcMenuSize

If you do not call CaleMenuSize, and the new item name is too long, some of it will
“spill off” into the background when vou pull down the menu.

Enabling and Disabling

As mentioned earlier in this chapter, an item can be disabled or enabled. A disabled
item is one that is not selectable; it appears dimmed in the menu. An enabled item
can be selected and appears in normal script.
You should disable items that are not relevant to the activity currently in progress.
If vou do so, the user cannot waste time selecting a meaningless activity to perform.
Here is how to disable an item:

PushWord #266 s1tem 1D number
_DisableMItem

250 Using Pull-down Menus

The corresponding enable function works similarly:

PushWord #2686 sI1tem ID number
_EnableMltem

Inserting and Deleting

To insert an item into an already-defined menu, use InsertMItem. It requires three
parameters: a pointer to an item line defining the menu item, the ID of the item
after which the item is to be inserted, and the ID of the menu to which the item
is to be added. Here is how to call InsertMItem:

PushPtr ItemEntry ;Pointer to item line
PushWord #257 sItem number to add after
PushlWord #3 sMenu number to add to
_InsertMitem

RTS

[temEntry DC C'##Inserted [tem\N333',11'0!

If you specifv an item number of 0, the item will be inserted at the top of the menu.
An item number of SFFFF causes the item to be added to the end of the menu. If
the menu number is 0, the first menu is selected.

The new item definition pointed to by InsertMItem's first parameter has the
same format as an entry in a menu/itemn line list. It must be followed by a null
character (0) or a return character (13).

You can also delete items from a menu. For this, use DeleteMItem:

PushWord #343 ;1D of item to be deleted
_DeleteMltem

You should not use DeleteMItem as a substitute for DisableMItem,

After vou have used the InsertMItem or DeleteMItem functions, the vertical
size of the menu necessarily will have changed, so call CalcMenuSize as you would
after using SetMItem to change an item name.

Checking and Marking

You can check or uncheck a menu item using the CheckMItem function:

True GEQU $8000
PushWerd #True sTrue = check it
PushWord #277 ;item ID number
_CheckMltem

Changing Item Attributes 251

The first parameter pushed on the stack is a Boolean instruction indicating whether
a check mark (ASCII code 18) is to appear to the left of the item name (true) or
whether it should not appear (false). This example checks item 277 because the
Boolean parameter is true. Push a value of 0 if you want to uncheck the item.

You can place any character you like to the left of the item name using the
SetMItemMark function. Here is how to use a diamond character as the marking
character:

PushWord #%$13 ;ASCI] code for "diamond"
PushMord #333 sitem ID number
_SetMlitemMark

Here are the codes for the four special icons included in the system font:

17 open-apple icon
18 checkmark icon
19 diamond icon

20 solid-apple icon

If you want to remove the marking character, specify an ASCII code of 0 for the
marking character. To determine which character is currently marking an item, use
GetMItemMark:

Pushlord #0 ;space for result

PushiWord #333 sitem ID number

_GetMItemMark

PLA iResult contains character code

If the item specified is not marked, the result is 0.

Changing the Text Style

Item names can be drawn in plain text or they can be boldfaced, italicized, under-
lined, outlined, or shadowed. Select a text style by passing a style word to Set-
MItemStyle as follows:

PushWord #%00000001 istyle word (bold)
PushWord #267 iitem ID number
_SetMItemStyle

252 Using Pull-down Menus

Five bits in the style word enable the five fundamental style attributes:

bit 0 bold

bit 1 italic

bit 2 underline
bit 3 outline
bit 4 shadow
bit 5-15 ZETO

To select a particular style, set the appropriate bit to 1. The style types are not
mutually exclusive, so you can combine them as you like. Use a style word of 0 if
you want the item name drawn in plain text.

« Note: Early versions of QuickDraw do not support italic, outline, or shadow.
In addition. fonts with a descent of 0 and 1 cannot be underlined; this includes
the default system font used on the cs.

To determine the current style of an item, use GetMItemStyle:

PushWord #0 ;space for result

PushWord #267 ;item ID number

_GetMItemStyle

PLA ;pop the result (a style word)

The result is a style word.

REMOVING MENUS

To remove a menu definition from the system permanently, thus freeing up the
memory it uses, first remove it from the system menu bar with DeleteMenu:

PHA ;space for result (handle)
PHA

PushWord MenulD : 1D number of menu
_GetMHandle

_DeleteMenu

Notice that GetMHandle is used here to determine the handle to the system menu.
Of course, if you saved the handle returned by NewMenu, you could just call
DeleteMenu after pushing the handle on the stack.

Removing Menus 253

Next, call DisposeMenu (this code assumes that you have saved the menu handle
at MenuHndl):

PushLong MenuHndl jHandle to menu
_DisposeMenu

Once yvou have disposed of a menu like this, vou cannot use it again unless youn
redefine it with NewMenu.

To reinstall a menu that was removed with Delete Menu but that was not disposed
of, use the InsertMenu function described earlier in this chapter.

Note that neither DisposeMenu nor DeleteMenu has an immediate effect on the
appearance of the menu bar on the sereen. To redraw the menu bar without the
removed menu, call FixMenuBar to recalculate the menu bar size, then call
DrawMenuBar.

USER INTERACTION

A vital part of any program using menus is the code that handles activity in the
menu bar area in a manner consistent with Apple’s user-interface guidelines. There
are two general ways of doing this, depending on whether vou are using a TaskMaster
event loop or a GetNextEvent event loop.

Using GetNextEvent

Handling menu bar activity if vou are using GetNextEvent requires the most work.
The program in listing 7-3 shows what to do. When GetNextEvent returns a mouse-
down event (code 1), it calls FindWindow to determine if the event oceurred in the
menu bar area. If it did, FindWindow returns a result of winMeguBar (17) and the
program calls MenuSelect.

MenuSeleet tracks the movement of the mouse until the mouse button is released.
It manages all the pull-down menu chores, including highlighting appropriate menu
titles and item names. It returns a result indicating which menu item was selected,
if any.

Here is the calling sequence for MenuSelect:

PushPtr TaskRecord ;Pointer to task record
PushLong #0 30 = system menu bar
_MenuSelect

The task record used by this call is the GetNextEvent event record that returned
the mouse-down event, followed by the long-word TaskData and TaskMask fields.
MenuSelect returns its result in the TaskData field: the low-order word is the 1D
of the menu item selected, and the high-order word is the 1D of the menu selected.
{TaskMask is actually used by TaskMaster only.} The program can then take whatever

254 Using Pull-down Menus

action is appropriate for the menu item selected. If the result is 0, no menu item
was selected.

The program in listing 7-3 also checks for keyboard equivalents of menu items.
As was mentioned earlier in this chapter, an item can be associated with a keyboard
equivalent using the * special character. To select such a menu item, you just tap
the appropriate key while holding down the Open-Apple key.

To deal with keyvboard equivalents, the program checks for keyv-down and autokey
events. When it finds one of these events, it passes the TaskRecord to MenuKey
for analysis. MenuKey, like MenuSelect, returns the ID of the menu item selected
in the low-order word of the TaskData field. If the keystroke did not correspond to
the primary or alternate equivalent, MenuKey returns an 1D of 0.

Using TaskMaster

It is much easier to deal with activity in the menu bar using TaskMaster than it is
using GetNextEvent, because TaskMaster automatically calls FindWindow and
MenuSelect to determine what menu item was selected. It also calls MenuKey to
check for keyboard equivalents. All you have to do is make sure that menu-bar
handling has been enabled in the TaskMask. The program in listing 7-4 shows what
a TaskMaster menu-handling routine looks like.

The event code returned by TaskMaster when a menu item has been selected is
wInMenuBar (17). This is the same code returned by FindWindow for a mouse-
down event in the menu bar. The ID numbers of the selected menu and menu item
are stored in the high- and low-order words of the TaskData field of the Task Record,
respectively.

Generally speaking, TaskMaster simply returns the ID number of the menu item
selected—it does not attempt to process the selection in any way (that is up to the
application). The exceptions involve desk accessory items, which have menu IDs
from 1 to 249, and special menu items, which have 1Ds from 250 to 255,

If a desk accessory item is selected, TaskMaster automatically opens the desk
accessory in question and returns a null result. If a desk accessory window is active,
special menu items are processed by passing them to the desk accessory for action.
The desk accessory handles the Close item (#255) by closing its window. Editing
items (#250 to #2534) may or may not be handled by the accessory (see chapter 9);
if they are not, TaskMaster returns a winSpecial (25) event code to give the appli-
cation a chance to do something with it.

Removing Menu Title Highlighting

If the user selects a menu item. both MenuSelect and MenuKey highlight the title
of the menu in which it appears. When processing of the commands ends, you
should call HiliteMenu to return the title to its normal appearance:

User Inferaction 255

PushWord #0 710 = normal title
PushWord TaskData+2 ;Menu ID number
_HiliteMenu

The first parameter is a Boolean parameter indicating whether the menu title is
to be highlighted (true) or drawn normally (false). The value passed here is false
(0), so the title is redrawn normally. The second parameter is the ID number
of the menu. It is stored in the high-order word of the TaskData field of the event
record,

COLOR AND THE MENU MANAGER

By default, menu bars and pull-down menus are white and any text items inside
them are black. The menu bar outline, menu outline, underlines, and dividing lines
are also black. When items are highlighted, the text becomes white and the back-
ground black,

With the SetBarColors function you can change the colors the Menu Manager
uses to display menu bars, menus, and the text items in them. The colors used for
unselected items, selected items, and outlines can be set separately.

Here is how to call SetBarColors:

PushlWord MewBarColaor sunselected color
PushWord MewlnwvertColeor iselected color
PushWord NewOutColer soutline color
_SetBarColors

Each of the three parameters defines the colors of two areas, as follows:

PARAMETER BITS 0-3 BITS 4-7

NewBarColor Text color when Background color when item is not selected
item is not se-
lected

NewlnvertColor Text color when Background color when item is selected
item is selected
NewOutColor [zero) Color of outline of menu and menu bar,
underlines, and dividing lines

Bits 8-15 must always be 0, unless you specify a negative parameter (bit 15 = 1).
When a parameter is negative, the color scheme of a given attribute does not
change.

In 640-by-200 mode you can use color numbers from 0 to 3. In 320-by-200 mode,
you can use color numbers from 0 to 15. The standard colors assigned to each
number were given in table 6-1 in chapter 6.

256 Using Pull-down Menus

REFERENCE SECTION

Table R7-1:

The Major Functions in the Menu Manager Tool Set (30F)

Function
Function Name Number
CaleMenuSize 51C
CheckMItem $32
DeleteMItem $10
DeleteMenu S0E
DisableMItem 531
DisposeMenu $2E
DrawMenuBar 52A
EnableMItem $30
FixMenuBar $13
GetMHandle $16
GetMItemMark $34
GetMItemStvle $36
HiliteMenu $2C

Stack
Parameters

Description of
Parameter

NewWidth (W)
NewHeight (W)
MenulD (W}

Checkltem (W)

ItemID (W)
ItemlD (W)
MenulD (W)
ItemID (W)
MenuHandle (L)
[no parameters)
[temID (W)
result (W)
result (L)
MenulD (W)
result (W)
ItemID (W)
result (W)
ItemID (W)
HiliteFlag (W)

MenulD (W)

Menu width (0=automatic)
Menu height (0=automatic)
1D of menu

True = check/False =
uncheck

ID of menu item

ID of menu item to delete
ID of menu to delete

ID of menu item to disable

Handle to menu to dispose

ID of menu item to delete
Height of menu bar

Handle to menu

ID of menu

Mark character (0=no mark)
ID of menu item

Text style

ID of menu item
True=highlight/False=normal

1D of menu

Reference Section 257

Function Stack Description of

Function Name Number Parameters Parameter

ElsertMItem $UF - A{ldltcmPtr.(—L} Ptr to item definition to use
InsertAfter (W) ID of item to insert after
MenulD (W) ID of menu to contain item

InsertMenu $0D AddMenuHndl (L) Handle to menu to insert
InsertAfter (W) 1D of menu to insert after

MenuKey %09 TaskRecPtr (L) Ptr to task record
MenuBarPtr (L) Ptr to menu bar (0=system)

MenuSelect $2B TaskRecPtr (L) Ptr to task record
MenuBarPtr (L) Ptr to menu bar (0=system

MenuShutDown $03 [no parameters]

MenuStartup 302 UserlD (W) ID tag for memory allocation
DPageAddr (W) Address of 1 page in bank 0

NewMenu $2D result (L) Handle to menu record
MenuList (L) Ptr to menu list record

SetBarColors $17 NewBarColor (W) Normal item color
NewlnvColor (W) Item color when selected
NewOutColor (W) Outline color

SetMItemName 23 NewltemStr (L) Ptr to new menu item string
ItemlID (W) ID of menu item

SetMenuTitle $21 NewTitleStr (L) Ptr to new menu title string
MenulD (W) 1D of menu

258 Using Pull-down Menus

Function Stack Description of

Function Name Number Parameters Parameter
SetMItem $24 NewLinePtr {L) Ptr to new item line

ItemID (W) ID of menu item
SetMItemMark 333 Mark[tem {W) ASCII code for mark

character

IternIDy (W) ID of menu item
SetMItemStvle $35 TextStyle (W) New text style

ltemID (W) ID of menu item

Reference Sectinn

259

Listing 7-1:

A Subroutine for Defining Menus and a Menu Bar

'Qbﬁllllllllli*illlllll.lll"lllll.lil"l.
This subroutine shows how to define @
+ standard Apple-File-Edit menus and a *

* system menu bar.
s e e s EE R R RN E R R SR R R RN N R R

DoMenus

- we um

START

PushLong #0
PushPtr MenulL3
_MewMenu
PushWord #0
_InsertMenu

PushLong #0
PushPtr Menul?2
_MHewMenu
PushWord #0
_lInsertMenu

PushLong #0
PushPtr Menul?
_NewMenu
Pushiard #0
_InsertMenu

PushWord #1
_FixAppleMenu

PHA
_FixMenuBar
PLA

_DrawMenuBar
RTS

; Menufitem lists:

Menul1

Menul 2

DC Cr>> @\N1X',H'0D!' ;Apple menu
DC C'##About this program .+« A\N25BW!

Dc C'*> File \N2',H'0D'" ;File menu

DC C'##Close\N255V!' H'0D"

DC C'##Quit\N257+0Qq',H"' 0D’

260 Using Pull-down Menus

Start defining the individual menus and adding them
to the menu bar. This i1s done from right to left order
for simplicity.

;0 = system menu
;Pointer to menu
;Define the Edit
;Add te menu

sDefine the File

bar
definition
menu

menu

;Define the Apple menu

iMenu ID (1 = Apple menu)
:Add DAs to Apple menu

:Set the menu size

;Display the menu bar

JH1OD!

;Special close item

Menul3 DC C'> Edit \N3' ,H'0D' ;Edit menu
DC Ct#elUndo\N250VeZz' ,H'OD! iSpecial edit items
pc C'##Cut \N251+Xx"' ,H'0OD?
DC C'##Copy\N252+Cc' H'OD!
DC C'#rPaste\N253+Vy! H'0D!
] C'##Clear\N254"' ,H'0D"
DC cr.t ;End of menu
END
Listing 7-2: Changing the Appearance of [tems in a Menu Using Special
Characters
Menul 4 DC C'>> Attributes \N4' H'0D!
DC C'##Bold\N258B' ,H'0D"
DC Crerltal ic\N259]"' ,H'OD?
DC Ct#sUnderline\N260U' ,H'OD!
DC C'##All Attributes\N2G61BIU',H'0D!
DC C'#eDisabled\N262D' ,H'0D"
DC Cra#s-\N2G3D' ,H'OD!
DC C'##Marked\N264C' ,H'13! ,H'0D!
DC C'##Checked\N2B5' ,H'0OD!
DC C"'Equlvalent B\N266+Bb!' ,H'0D!
DC C'f!Divlding\HEG?V',H'BD'
DC C'##Normal [tem\N2EB',H'0D'
DpC o B ;End of menu

Listing 7-3:

Handling Menu Activity When Using a GetNextEvent Event Loop

wlnMenuBar
MenuDemo

EvtLoop

GEQU 17 3;In menu bar

START

PHA

Pushlord #$FFFF ;All events

PushPtr TaskRec

_GetNextEvent

PLA ;Did anything happen?
BEQ EviLoop sNo, so branch

LDA what ;Get event code

CMP 1 sMouse-down?

BEQ FindWhere sYes, so branch

cMP #3 ;Key-down?

BEQG EquivChk iYes, so check for equivalent
CHP #5 jAuto-key?

BEG EquivChk ;Yes, so branch

Reference Section

261

DelOther ANOP
i [handle other types of ewvents herel
BRL EvtLoop
iCheck for keyboard equivalents of menu items:

EquivChk PushPtr TaskRec

PushLong #0 ;0 = system menu bar
-MenuKey

LDa TaskData imenu item selected?
BNE DeMenu ;Yes, so handle it
LDA what 1Get code back

BRL DoOther

;Find out where the mouse-down took place:

FindWhere PHA iSpace for result
PushPtr TheWindow ireturn window pointer here
PushLong where ipush point to check (global)
_FindWindow
PLA ;Get result code
cCMp #wlnMenuBar ;In menu bar?
BEQ WasMenu i¥Yes, so branch

i [handle mouse activity in other areas herel

BREL EUtLan

WasMenu PushPtr TaskRec
Pu;thng #0 30 = system menu bar
_MenuSelect ;Determine which menu item

; Handle menu selections:

DoMenu LDA TaskData :Get menu item ID
BEQ EvtLoop iBranch if nothing selected
CHMP #25E i1s it a special item (1D < 256)7
BCC DoMenut ;¥es, so branch

i This code assumes that standard menu items are numbered
i consecutively from 256G.

262 Using Pull-down Menus

AND
ASL
TAX
JSR
BRA

DoMenu1 JSR

TitleDff Pushblord
PushWord TaskData+2

#$00FF ;Convert to 0 base

A ;x2 to step into table
(MenuTable, X} ;Call 1tem subroutine
TitleOff

DoSpeciall

#0 ;0 = title highlighting off
sThe menu 1D is at TaskData+2

_HiliteMenu

BRL

EvilLoop

3 Table of subroutine addresses, in numeric order:

MenuTable DC
DC
DC

['Doltem256!
I'Doltem257!
I'"Doltem258"

3 Handle special editing items, close item here:
; Normally would pass these to the Desk Manager

3 with SystemEdit.
DoSpeciall ANOP

CMP
BNE

3 Put code here to
RTS

Here is where to
The ID. codes are
253 (Paste), and

E owE e

DoEdit SEC
SBC
ASL
TAX
JMP

EditTable DC
DC

#255 ;:Close item?

DoEdit 1Mo, so it must be Edit item

close the active window.

put code to handle the special edit items.
250 (Undo), 251 (Cut), 252 (Copy),
254 (Clear).

#250 :Convert to 0 base
A ;%2 to step into table

(EditTable, ¥}

['DoUndo’!
I'DaCut!?

['DoCopy’
['DoPaste’
['DoClear!

Reference Section

263

DoUndo ANOP
DoCut ANOP
DaCopy ANOP
DoPaste ANOP
DoClear ANOP
RTS

TheWindow DS B
;GetNextEvent task record:

TaskRec ANOP

What DS
Message DS
When DS
Where DS

Modifiers DS
TaskData DS
TaskMask DC

— B BB A

4'$00001FFF "

END

Listing T—4:

iReturned by FindWindow

+Event cade

;Event result

iTicks since startup
iMouse location (global)
;Status of modifier keys
;TaskMaster data
;TaskMaster handles all

Handling Menu Activity When Using a TaskMaster Event Loop

wlnMenuBar GEGQU 17
wlnSpecial GEQU 25
MenuDemo START

EvtLoop PHA
PushWord #S$FFFF

PushPtr TaskRec
_TaskMaster

PLA

CMp #wlnMenuBar
BEQ DoMenu

cmp #winSpecial
BEQ DoMenu

;3 handle other result codes here
BRL EvtlLoop

3 Handle menu selections:

DoMenu LDA TaskData
CMpP #256
BCC DoMenul

264 Using Pull-down Menus

+In menu bar
;In special menu item

iAll events

;Get result code

sMenu i1tem selected?
;Yes, so branch
;jSpecial menu item?
;Yes, so branch

sIs 1t a special item (ID < 256)7
+Yes, so branch

: This code assumes that standard menu

items are numbered

i consecutively from 256.

AND
ASL
TAX
JSR
BRA

DoMenui JSR

TitleOff

PushWerd TaskData+2

PushWord

#$00FF ;Convert to 0 base
A ;x2 to step into table

(MenuTable,X)
TitleOff

;Call item subroutine

DoSpeciall

#0 ;0 = title highlighting off
is at TaskData+2

+The menu ID

_HiliteMenu

BRL
; Table of

Dc
DC
DC

MenuTable

; Handle special editing items, close

DoSpeciall ANOP

cmp
BNE

+ Put code here to
RTS

: Here is where to
; The ID codes are
; 253 (Paste), and
DoEdit SEC
SEC
ASL
TRX
JMP

EditTable DC
DC
DC
DC
DC

subroutine addresses, in

EvtLoop
numeric order:

I'Doltem256!
1'Doltem257!
1'Doltem258!

item here:

#255 ;Close item?
DoEdit Mo, so it must be Edit item
close the active window.

put code to handle the special edit items.
250 (Undo), 251 (Cut), 252 (Copy),
254 (Clear).

#250 :Convert to 0 base
A ;x2 to step into table

(EditTable,X)

['DaUndo!
['DoCut'?
I['DoCopy!
['DoPaste’
1'DoClear’

Reference Section

265

DoUndeo ANOP
DeCut ANOP
DoCopy AMOP
DoPaste ANOP
DeClear ANDOP

RTS

;TaskMaster task record:

TaskRec ANDP

What DS
Message DS
When DS
Where DS

Modifiers DS
TaskData DS
TaskMask DC

Lol LA S - A % |

4'$00001FFF!

END

266 Using Pull-down Menus

;Event
sEvent
1 Ticks
;Mouse

code

result

since startup
location (global)

;Status of modifier keys
;TaskMaster data
;TaskMaster handles all

CHAPTER 8

Using Dialog
and Alert Boxes

Apple’s standard user-interface guidelines describe two special tyvpes of windows
called dialog boxes and alert boxes. The general appearance of these types of
windows is shown in figures 85-1 and 8-2. Dialog boxes are conveationally used to
request certain types of input from the user. They can include several data input
fields, containing such items as a line of text that can be edited, check boxes,
buttons, and seroll controls. They can also contain static items which cannot be
modified, such as text strings, icons, and pictures.

An alert box, as its name suggests, normally warns a user of the consequences of
a proposed action which might result in the destruction or loss of data. In a typical
application, an alert box contains "OK” and “"Cancel” buttons that can be clicked to
either verify the action or abort it. For instance, if you are running a disk utility
program and you try to format a disk, you will invariably see an alert box warning
vou that the operation will destroy data and asking vou to verifv that yvou wish to
proceed.

Alert boxes can be used to display status information as well. Most “About...”
items in the standard Apple menu use alert boxes to display authorship and copyright
information, for example.

The main difference hetween alerts and dialogs is that alerts do not contain any
user-alterable input areas, such as a text editing box. They contain only static items
and one or more buttons yvou can click to dismiss the alert and continue with the
main application.

To create and control dialog and alert boxes, vou must use a tool set called the
Dialog Manager (tool set 21). This chapter investigates the Dialog Manager and
explains how vou can use it in your applications.

267

Figure 8-1. A Dialog Box

Communications Parameters
Baud Rate: (D300 @1200 O 2u00
DataBits: @8 (O7
StopBits: @1 (2

Parity: @None (OEven () 0dd
[IFilter < XONXOFF [Line Delay

Download File; |I33NEL3 y

Figure 5-2. An Alert Box

STARTING UP THE DIALOG MANAGER

To start up the Dialog Manager, pass the 1D of the program (the one returned by
MMStartup) to DialogStartup:

PushWord MylD iProgram 1D
_DialogStartup

268 Using Dialog and Alert Boxes

Calling DialogStartup prepares the Dialog Manager for activity and initializes all
internal variables and routines.

Because the Dialog Manager uses QuickDraw II, the Window Manager, the
Menu Manager, the Control Manager, and the LineEdit tool sets, vou must start
them up before calling DialogStartup. The STANDARD.ASM program in chapter
3 takes care of this for vou.

The only tool set in this list that has not been discussed before is LineEdit, a
tool set used for editing lines of text. To start it up, you must provide one page in
bank $00 that it can use as a direct page. Here is the start-up sequence:

PushWord MyID ;ProgramlD
PushWord DPSpace ;Address of one page DP area
_LEStartup

The standard LineEdit editing commands will be examined later in this chapter.
When you have finished using the Dialog Manager, shut it down with the

DialogShutDown function. This function expects no input parameters and returns

no results. You can shut down LineEdit by calling LEShutDown in the same way.

CREATING DIALOG BOXES

Two general classes of dialog boxes can be implemented on the Gs: modal and
modeless. A modal dialog box is one that, once displayed, handles all keyboard and
mouse events until the user dismisses the box by clicking a button in the box.
Mouse clicks outside the dialog box are ignored, so you cannot pull down a menu,
select another window, or use a desk accessory until the modal dialog box is
dismissed. In fact, this is how the modal dialog box gets its name: when vou are
using it, vou are confined to a special operating mode until a button is clicked.

A modeless dialog box, on the other hand, is just like any other window on the
screen, and TaskMaster treats it as such. It has a goaway box and a title bar, but no
zoom box, grow box, or scroll controls. The user is free to switch between the
modeless dialog box and any other window on the screen in the usual way. You can
remove a modeless dialog box from the screen just as you would any other window:
by clicking its goaway box or selecting the Close item from a File menu when the
window is active.

Modal and modeless dialog boxes are defined and ereated using the same general
programming techniques. The difference in their behavior arises because different
instructions are used to interact with them while they are on the screen.

Modal Dialog Boxes

To ereate a modal dialog box, you can use either NewModalDialog or GetNew-
ModalDialog. The main difference between the two is that all the parameters for a
NewModalDialog call are pushed on the stack. With GetNewModalDialog, the only

Creating Dialog Boxes 269

parameter is a pointer to a dialog template; the template contains all the information
needed to display the dialog box correctly.

You will probably prefer to use GetNewModalDialog, because it requires less
work. Here is how to call it:

FHA ;Space for result (long)
PHA

PushPtr DlogTemp :Pointer to dialeg template
_GetNewModalDialog

PopLong DialegPtr ;Pop dialog pointer

An example of how to use GetNewModalDialog is shown in listing §-1. It creates
the dialog box shown in figure 5-1.

GetNewModalDialog draws the dialog box on the screen, but does not actually
draw the items inside the box (that is done by ModalDialog; see below). The result
returned by GetNewModalDialog is a pointer to the internal record that the Dialog
Manager maintains in order to keep track of the modal dialog box. Save it for use
with other dialog-related functions.

The dialog template required by GetNewM odalDialog is a variable length table
containing information about the size of the dialog box and the items it is to contain.
Here is its structure:

DlogTemp ANOP

Dc 1't,1,b,r" ;Content rectangle {global)
DC 1" $FFFF! 1Mon-zero = Visible

DC 140! ;Reference constant

DC l4'Iteml!' :Pointer to 1st item template
DC [4'1tem2' ;Pointer to 2nd item template
DC 4" [temN' Pointer to MNth item template
DC [4'0! ;Long zero terminator

The template begins with the rectangular dimensions of the content portion of the
dialog box, in global coordinates. These dimensions are followed by a Boolean value
that indicates whether or not the dialog box is to be visible; you should make this
value non-zero (true) so that the box will appear on the screen. The third parameter
is a reference constant that the application can use for anything it likes.

Next comes a series of pointers to the templates for the various items to be drawn
inside the dialog box. These item templates will be discussed in the next section.
The last item pointer is followed by a long zero, which marks the end of the list.

If vou choose to use NewModalDialog, vou must provide three input parameters:
a pointer to the content rectangle. the visible flag, and the reference constant:

PHA ;Space for result
PHA
PushPtr BoundsRect :Pointer to rectangle def

270 Using Dialog and Alert Boxes

Pushlord #%8000 ;VMisible Boolean

PushLong #0 ;Reference constant
_NewMedalDialog
PopLong DialegPtr iPop dialog pointer
RTS

BoundsRect DC I't,l,b,r" ;Rectangle definition

Notice that the item definitions are missing. After calling NewModalDialog, vou
must attach items to the dialog record using the NewDltem or GetNewDItem
functions. Both are described later in this chapter.

ITEM TYPES

As mentioned ahove, the dialog template vou pass to GetNewModalDialog contains
pointers to the definition templates for each item that is to appear in the dialog box.
The items supported by the Dialog Manager are as follows:

Button

s Check box

« Radio button

Scroll bar

e User-defined control (two types)

Static text (up to 255 characters)

Long static text (up to 32,767 characters)

Editable line

Icon

e QuickDraw IT picture

» User-defined item

The standard symbolic names for these items are shown in table 8-1. Figure 8-3
shows what the standard item types look like.
The template for any item has the following structure:

ItemTemp ANOF

DC
DC
Dc
DC
Dc

["ItemID?' ;Unique ID code for the item
I4't,1,b,pr! iThe item rectangle

['ItemType! iltem type code

14" temDescr! ;Iltem descriptor (item specific)
['ITtemValue! iInitial value of i1tem

Item Types 271

Table 8-1: Item Type Codes for Dialog and Alert Boxes

Symbolic Name Code Description
Buttonltem 3000A Button control
Checkltem $000B Check box control
Radioltem $000C Radio button item
SerollBarltem $000D Seroll bar control
UserCtlltem S000E User-defined control
StatTex.l $000F Static text
LongStatText $0010 Long static text
EditLine 30011 Editable line
Iconltem 50012 Icon

Picltem %0013 QuickDraw II picture
Userltem 50014 User-defined item
UserCtlltem2 $0015 User-defined control
ItemDisable $5000 Add this to disable

NOTE: Add the constant ItemDisable to the code for an item to disable that item.

Dc ['"ltemFlag! ;Display flags (item specific)
Dc I4'ItemColor! ;Pointer to item's color table

The ItemlD is an identification number you assign to the item. No other item in
the dialog box may use the same number.

ItemRect is the rectangle in which the item will be drawn. The coordinates are
in standard top, left, bottom, right order. You will find that the most frustrating
aspect of defining an item is adjusting its rectangle so that it appears in the correct
position and does not overlap other items.

ItemType is the code the Dialog Manager uses to identify the type of control
you are defining. The values for each type of item are shown in table 8-2. The
symholic names for these codes are defined in the STANDARD.ASM file with
GEQU directives.

The meaning of ItemDescr is different for each item type. It is generally a pointer
to a data area associated with the item. For a static text item, for example, it points
to the text string.

272 Using Dialog and Alert Boxes

Figure 8-3. Common Items Used in Dialog Boxes

Editable Text
Buttonl| [=<] Check Box On

L_] Check Box Off

(® Radio Button On

¥Icon (O Raodio Button Off
Scroll Bar --

ItemValue contains the initial value of the item. As will be discussed, control
items like check hoxes, radio buttons, and seroll bars have values associated with
them.

The primary purpose of ItemFlag is to indicate whether the item is to be visible
or invisible. For visible items, bit 7 must be 0, for invisible items, bit 7 must be 1.
Certain other items, namely buttons and scroll bars, use other bits in ItemFlag to
control their appearance. Radio buttons use six bits as a family number so that
related radio buttons can be dealt with as a group.

ItemColor points to a color table for the item. Set it to 0 to use the standard
color table.

Each of the item types supported by the Dialog Manager is described below.

Buttons

A button item (Buttonltem) is a rectangle that the user can click to dismiss the
dialog box. The application should react to the click by saving the values of anv
other items in the dialog box, removing the box from the screen, and then taking
whatever action is appropriate for the button selected.

The ItemDescr field in an item template points to the name of the button
(preceded by a length byvte); the name is drawn inside the button rectangle.
ItemValue is not used.

Item Types 273

Table 8-2: The Contents of the ItemDescr, ItemValue, and ItemFlag Fields in
an Item Template

Item Type ItemDescr ItemValue
Buttonltem Pointer to item name [Not used]
Checkltem Pointer to item name O=off, 1=0n
Radioltem Pointer to item name O=off, 1=0n
ScrollBarltem Pointer to action procedure Initial value: 0 to 290
UserCtlItem Pointer to control procedure Initial value
StatText Pointer to static string [Not used]
LongStatText Pointer to text Text length: 0 to 32767
EditLine Pointer to default string Maximum length: 0 to 255
Iconltem Handle to icon definition [Not used]
Picltem Handle to picture [Not used]
Userltem Pointer to definition procedure [Not used]
UserCtlltem?2 Pointer to control parameters Initial value
Item Type ItemFlag
Buttonltem Bit 0 : 1 = bold outline, 0 = normal

Bit 1 : 1 = square-corner, 0 = round-corner
Radioltem Bits 0-6 : family number (0 to 127)
ScrollBarltem Bit 0 : 1 = up arrow on scroll bar

Bit 1 : 1 = down arrow on scroll bar

Bit 2 : 1 = left arrow on scroll bar

Bit 3 : 1 = right arrow on scroll bar

Bit 4 : 1 = horizontal scroll bar, 0 = vertical

NOTE: For all other items, set bit 7 of ItemFlag to 1 to make the item invisible.

The button is usually a rounded-corner rectangle, but it can also be a square-
cornered rectangle with a drop shadow if bit 1 of ItemFlag is set to 1.

Most modal dialog boxes and alert boxes contain at least one button so that they
can be dismissed in accordance with the user-interface guidelines.

A default button is one which may be selected by pressing the Return key. By
convention, the default button is enclosed by a dark, black border so that it can be

274 Using Dialog and Alert Boxes

readily identified. If you define more than one button in a dialog box, the one most
likely to be selected should be made the default so it can be selected easily from
the keyboard.

For modal dialog boxes, a Buttonltem with an ID of 1 is always the default item.
Such a button is typically labeled as the OK button. For alert boxes, a button with
an 1D of either 1 or 2 in the item list can be designated as the default when you
create the alert’s item list. These buttons are usually marked as the “OK" and
“Cancel” buttons.

Check Boxes

A check box item (CheckItem) is always associated with a parameter that can be in
one of two states: on and off, selected and not selected, high and low, and so on. A
check box appears as a small square in the dialog box. When it is on, its value is 1,
and it has an X drawn in it. When it is off, its value is 0, and the square is hollow.

The ItemDescr field in a check box template contains a pointer to the name of
the check box. The name is drawn to the right of the check box, inside the item'’s
display rectangle. ItemValue contains the initial value of the check box and can be
either 1 {on) or 0 (off).

Radio Buttons

Radio button items (Radioltem) usually appear in groups of two or more, with each
radio button representing a different value that may be associated with one particular
parameter of interest to the application. They appear as small circles in a dialog
box. and the one that is on (value 1) has a smaller black circle inscribed in it. The
radio button’s name, pointed to by ItemDescr, appears to the right of the button.

A radio button derives its name from the fact that when you select one by clicking
it. all other buttons in the group are turned off, just like when you select a station
on a standard car radio,

It is possible to assign associated radio buttons to the same family so that when
one is turned on all the others will automatically turn off. To do this, put the family

number (from 0 to 127) in bits 0 through 6 of ItemFlag.

Scroll Bars

Scroll bars have already been discussed in connection with the Window Manager.
You can use them to reflect the value, in pictorial form, of any measurable quantity
that might take on a range of values. For example, the position of the thumb in a
vertical scroll bar might represent the amount of free space on a disk.

The ItemDeser field of a ScrollBarltem is a pointer to an action procedure that
is called when any part of the scroll bar is selected. For information on how to
design such a control, refer to the Apple 1IGs Toolbox Reference. If the pointer is
0, the Dialog Manager does nothing special.

[tem Types 275

A scroll bar can take on values from 0 to 290; this range is reflected by the
position of the thumb on the bar relative to the end points. ItemValue contains the
initial value of the scroll bar.

The appearance of the control can be set using bits 0 to 4 of ItemFlag. These
bits have the following meanings:

hit O 1 = draw up arrow on scroll bar

bit 1 1 = draw down arrow on scroll bar
bit 2 1 = draw left arrow on scroll bar

bit 3 1 = draw right arrow on seroll bar
bit 4 1 = horizontal scroll bar, 0 = vertical

The ItemFlag value for a horizontal scroll bar with arrows would be $001C, for
example

User Control Items

The first type of user control item (UserCtlltem) is a custom control designed in
accordance with the specifications of the Control Manager. For these tvpes of items,
ItemDescr points to a control definition procedure, and ItemValue contains the
initial value of the control. For instructions on how to design custom controls, refer
to the Control Manager chapter of the Apple Hes Toolbox Reference.

The other type of user control item (UserCtlltem2) is useful if vou want to
implement any control defined by the Control Manager. ItemDescr points to a
parameter block that contains the address of the definition procedure for the control,
a pointer to the title of the control, the view size, and the data size.

Static Text and Long Static Text

A regular static text item (StatText) is a string of up to 255 characters to be drawn
in the dialog box. It is said to be static because you cannot edit it. A long static text
item {LongStatText) is similar to a StatText item, but it can hold up to 32,767
characters. Both these items are used for such purposes as displaving commands,
displaving explanatory messages, or posing questions.

For a StatText item, the ItemDescr field in the item template points to the string
(preceded by a length byte) that contains the static text. The ItemValue field is
undefined. For a LongStatText item, ItemDescr points to the start of the text (no
preceding length byvte). ItemValue contains the length of the string.

To define a static text item that is to be drawn on more than one line, vou must
insert carriage return codes (ASCII $0D) inside the text string. The Dialog Manager
does not automatically wrap text at the item rectangle boundary.

Be careful to make the item rectangle deep enough to hold the text. If it is too
shallow, the text will be clipped. If vou are drawing a single line of text using the

276 Using Dialog and Alert Boxes

system font, the depth should be at least nine rows (the ascent+descent+leading
of the font).

It is often convenient to be able to change the precise wording of a static text
item after it is initially defined, by inserting filenames or phrases which cannot be
predicted in advance. The easiest way to do this is to use the "0, "1, "2, and "3 text
place holders when vou first define the static text item.

You can assign a text string to each of these place holders to ensure that when
the dialog box is drawn, the strings are substituted for the place holders. The
instruction to use for this is _ParamText:

PushPtr Stringl iString for "0
PushPtr Stringl iString for 1
PushLong #0 ;(Don't change *2 string)
PushPtr String3 iString for "3

_ParamText

String0 STR 'placeholder 0!
Stringl STR 'placeholder 1!
String3 STR '4th placeholder?

If you do not want to change a particular string, push a long word 0 on the stack
instead of a pointer to the string. This was done for the "2 place holder in the
example.

Suppose vou use a dialog box to ask for verification of a disk formatting operation.
Instead of using a general static text item like “Are you sure vou want to erase the
disk?”, yvou can define an item such as “Are vou sure vou want to erase 07" You
can then use _ParamText to substitute for "0 the actual name of the disk selected.
This must be done before the dialog is displayed, of course.

Editable Line

An editable line item (EditLine) is a single line of text that may be edited using the
standard editing techniques supported by the LineEdit tool set. The text can be up
to 255 characters long and is enclosed by a rectangle.

You must be careful to ensure that the height of the rectangle for an EditLine
item is at least two rows greater than the height of the font. If vou are using the
system font, for example, the rectangle height must be at least 11 rows. If the
rectangle height is lower, no characters will appear.

The standard LineEdit editing techniques are as follows:

An insertion point can be selected by clicking the mouse at any position in the
text string. The insertion point is marked by a blinking vertical bar; subsequent
characters will be placed at this location.

Item Types 277

A range of text can be selected by dragging the mouse across the text, (Selected
text appears as white characters against a black background.) A selection range
is deleted when a subsequent character is entered.

A word can be selected by double-clicking the mouse anywhere in the word.
All the text can be selected by triple-clicking.

A selection range can be extended by clicking while holding down the Shift
key.

Pressing Control-X will erase the entire line.

Pressing Control-Y will erase everything from the current insertion point to the
end of the line. If a selection range is active, it is deleted.

The left- and right-arrow keys can be used to move the insertion point back and
forth in the text line,

Pressing Control-F will delete the character at the insertion point or will delete
the selection range.

Pressing Delete will delete the character to the left of the insertion point and
move all the characters to the right of the insertion point one position to the
left, or will delete the selection range.

Pressing any other key will insert that key character at the insertion point; if a
range is selected, the characters in the range will be deleted and replaced by
the key character.

Open-Apple-X, Open-Apple-C, and Open-Apple-V can be used to perform cut,
copy, and paste operations, all of which involve a data area called the clipboard.
Cutting transfers the selection range to the clipboard and removes it from the
line. Copying does the same thing, but without removing it from the line.
Pasting involves transferring text from the clipboard to the line at the insertion
point (if a selection range is active, the selection is deleted first).

Using an editable text item for user input makes it unnecessary for vou to write
yvour own line editor.

For an EditLine item, ItemDescr is a pointer to the string (preceded by a length
byte) that will be shown when the dialog box first appears. The ItemValue field
contains the maximum length of the string; the possible choices are 0 to 255.

When a dialog box is drawn, the first EditLine item is totally selected so that
you can delete it quickly by pressing a key to enter a new string. If there is more
than one editable text box item, you can use the Tab key to move from one to the
next. If you are in the last text box when vou press Tab, yvou will go to the first box.

As will be discussed later, the Dialog Manager contains functions vou can use to
change the EditLine text, to determine its contents, and to select any portion of it.

278 Using Dialog and Alert Boxes

Icons

An icon (Iconltem) is a static item that defines a small rectangular image on the
screen. The ItemDescr field in a template contains a handle (not a pointer) to the
icon definition. ItemValue is not used.

An icon definition begins with the pixel dimensions of the icon, in rectangle
form. (The width of the icon must be a multiple of 8.) Following the rectangle are
the bytes defining the bit image of the icon. When designing an icon, keep in mind
that there are two bits per pixel in 640-by-200 mode and four bits per pixel in 320-
by-200 mode.

Here is the definition for an icon in 640-by-200 mode that looks like an asterisk:

Mylcnn ANOP

DC ['0,D0,9,16! ;lcon rectangle

DC H'FFFOFFFF! ;Bit image defining each row
DC H'OFFOFFOF! {2 pixels!nlbhle in 640 mode)
DC H'FOFOFOFF!

D H'FFOOOFFF!

DC H'0000000F "

pc H'FFODOFFF!

Dc H'FOFOFOFF?

DC H'OFFOFFOF!

pc H'FFFOFFFF!

Remember that two U bits refer to a black pixel on the 640-by-200 screen, and two
1 bits refer to a white pixel.

Pictures

A picture item (Picltem) contains a handle to a QuickDraw II picture in its
ItemDescr field. The ItemValue field is not defined.

User Item

A user item (Userltem) is one whose appearance and behavior is defined by the
application. For such an item, ItemDescr points to an item-definition procedure
and ItemValue is not used.

The Dialog Manager calls an item-definition procedure with a JSL instruction
after first pushing two parameters on the stack: a pointer to the dialog (long) and
the ID number of the item to draw (word). This information is provided so that you
can use the same item-definition procedure to handle many user items and dialog
windows.

After the procedure does what it is designed to do, perhaps drawing a fancy
border or plaving a tune, it must remove the input parameters from the stack and
return. Here is the code fragment you will need to do this:

Item Types 279

LDA

2 ;Remove parameters by moving
STA 8

1

7

i the return address up

e

'S
LDA 5 ; by B bytes
+5

STA

TS5C ;Add & to the stack pointer
CLC

ADC #6

TCS

RTL

The procedure ends with RTL because it is called with a JSL instruction.

DISABLING ITEMS

Any item in a dialog can be marked as disabled by adding the [temDisable constant
($8000) to its item type code. Disabled items still look the same, but user activity
in them is not reported to the application. It is a good idea to disable static items
like icons, pictures, and text so that the application does not have to bother dealing
with mouse activity in them.

ADDING ITEMS TO DIALOG BOXES

If vou have created a dialog box with NewModalDialog, you need to add items to
it before anything useful will appear on the screen. Even if you have used Cet-
NewModalDialog with predefined items, you may want to add new items to react
to changes in standard operating conditions.

To add an item, use either GetNewDItem or NewDItem. Using GetNewDItem
is the easiest;

PushLong theDialog ;Push dialog pointer
PushPtr ItemTemplate iPush pointer to item template
_GetNewDItem

As vou can see, GetNewDlItem expects to find the item parameters in a template.
The form of this template is the same as described in the previous section.
NewDItem expects you to push the item parameters on the stack instead:

PushLong theDialog ;Dialog pointer

PushWord ItemID sItem ID number

FushFtr ItemRect ;Pointer to item rectangle
PushWord ItemType iltem type code

FushLong ItemDescr jltem descripter

PushWord ItemValue ;ltem value

280 Using Dialog and Alert Boxes

PushWord ItemFlag
PushLong ItemColor

_HewDltem

;ltem flag
:Ptr to i1tem color table (0O=default)

CHANGING ITEM ATTRIBUTES

Many Dialog Manager functions can be used to read and change attributes of the
items in a dialog box item list.

GetlText
SetlText
SellText
GetDItemType
SetDIltemType
GetDItemBox
SetDItemBox
GetDefButton
SetDefButton
GetDItemValue
SetDItemValue
HideDItem
ShowDItem
FindDItem
DisableDItem
EnableDIltem

Return text of a StatText or EditLine item
Set the text of a StatText or EditLine item
Set the selection range of an EditLine item
Get the item type code for an item

Set the item type code for an item

Return the display rectangle for an item
Set the display rectangle for an item
Return the 1D of the default item

Set the 1D of the default item

Return the itemValue for an item

Set the itemValue for an item

Erase an item

Display a hidden item

Return the ID of the item at a given point
Disable an item

Enable an item

Of these functions, only GetlIText, SetiText, SellText, GetDItemValue, and Set-
DItemValue are commonly used by applications. You may find a need for the others
if you need to write a complex filter procedure (see the discussion of filter procedures
below).

This section discusses ways of using this group of five major attribute commands.
For information on the others, refer to the Apple 11cs Toolbox Reference.

Dealing with Text Items

It is often necessary to determine the text associated with a particular EditLine
item so that the application can take the user’s input and deal with it. For this, use
GetlText:

PushlLong theDialog

;Dialog pointer
PushWord itemlD

s 1D number of i1tem

PushPtr theText ;Pointer to string area
_GetlText
RTS

theText DS 256 ;Space for returned string

Changing Item Attributes 281

The space you reserve for theText must be one byte greater than the maximum
length of the text item permitted. The extra byte is for the leading length byte. You
can also use GetlText with a StatText item if you wish.

To change the text of a StatText or EditLine item, use SetIText:

PushLong theDialog iDialeg pointer
PushWord i1temlD iltem ID number
PushPtr MyText iThe new text string
_SetlText

MyText STR 'This i1s a new string'

The string at MyText must be preceded by a length byte. You can also change the
text of an item using the ParamText command described earlier in this chapter. For
this to work, the item text must contain place holder characters of the form "0, *1,
*2, and 3.

Another thing you can do is preselect all or a portion of an EditLine item.
Selected text is highlighted in white letters on a black background and is deleted
and replaced when you type a character from the keyboard. If the item contains a
default string, you will probably want to select the entire string, so the Dialog
Manager does this for you. That way, the default will disappear when the user types
a character to change the entry.

Suppose the user is to enter an EditLine item that ends with a filename suffix of
"ASM". If you display a default, you may wish to highlight everything but the suffix
so that the user does not have to retype the suffix if he enters a new name. Here
is how vou arrange for the proper highlighting using SellText:

PushLong theDialog ;Dialog pointer

PushWord itemlID iltem ID number

PushWord #0 iStarting char. position
SEC

LDA Namelen iGet length of name

SBC #4 ;Subtract suffix size

PHA ;Ending character position
_SellText

The starting and ending position parameters passed to SellText run from 0 up to
the maximum size of the text string. A 0 value refers to a position to the left of the
first character, 1 refers to a position to the left of the second character, and so on.
If the starting and ending positions are equal, a blinking vertical bar appears at that
position. Typed characters are inserted at this point.

282 Using Dialog and Alert Boxes

Reading and Changing the Item Value

To read the current numeric value of an item, use GetDItemValue as follows:

PHA ;Space for result
PushLong theDialeg ;The dialeog pointer
PushWord itemID sThe ID of the item
_GetDItemValue

FLA ;Get the result

Of course, this function is useful only for those items that use the ItemValue field
in the item template. For check boxes and radio buttons, the value can be 0 (off)
or 1 (on). Other values are possible for scroll bar and user control items. For a
LongStatText item, the value is the length of the text.

Use SetDItemValue to assign a particular value to an item, You will use it most
often to select and deselect check boxes and radio buttons. For example, if you
detect a mouse click in a check box that is off, you would turn it on (put an X in it)
using the following instructions:

FPushWord #1 ;New value (1=on)
PushLong theDialog iDialog pointer
PushWord itemlD ;1D of dialog item

_SetDltemValue

When you turn on a radio button item like this, the Dialog Manager automatically
turns off all radio button items with the same family number. This is in keeping
with the user-interface guidelines, which insist that only one radio button in a group
may be on.

USING DIALOG BOXES

The proper way to handle a dialog box once it is on the screen depends on whether
it is a modal or modeless dialog box.

Modal Dialog Boxes

As soon as you define a modal dialog box on the screen with NewModalDialog or
GetNewModalDialog you must call ModalDialog to monitor events within the box
and get a result indicating what item was selected. You can then deal with the result
as you see fit before calling ModalDialog once again to get more input or dismissing
the dialog box if a button was selected.

To dismiss a box, call CloseDialog to erase it from the screen. This function
requires only one parameter, a dialog pointer.

Using Dialog Boxes 283

To use ModalDialog, push space for a word result and then push the address of
a filter procedure:

PHA ;Space for result

PushPtr FilterProc ;Pointer to filter procedure
_ModalDialeg

PLA ;1D of item selected

A filter procedure is a subroutine ModalDialog calls after it detects an event but
before it responds to it. By using such a procedure, you can modify the effect of an
event any way you like. If you are not using a custom filter procedure (the usual
case), just push a long word zero on the stack. This invokes the standard filter
procedure which converts a press of the Return key to a mouse click in the box’s
default button; it also handles the keyboard commands for cut (OpenApple-X), copy
(OpenApple-C), and paste (OpenApple-V) operations properly.

A sample filter procedure is shown in listing 8-2. When ModalDialog calls it,
there is a result space, three long values, and a three-byte return address on the
stack:

result (word)

dialeg pointer (long)

pointer to event record (long)
pointer to itemHit variable (long)
return address (3 byles)

When the filter procedure ends, it must remove the three long input parameters
from the stack by moving the return address up by 12 bytes and adjusting the stack
pointer accordingly.

The result of a filter procedure is a Boolean value. If it is true, ModalDialog ends
and returns the ID number which the filter procedure returns in itemHit. If it is
false, ModalDialog handles the event in its usual way.

The filter procedure can tell what type of event it is dealing with by checking
the “what” field of the event record. To force the event to be ignored, it can put a
0 in the What field to convert the event to a null event.

The procedure in listing 8-2 filters out keyboard control characters (other than
those needed for editing) in this way. Without this filter, control characters appear
as inverse question marks in an EditLine item.

When designing a custom filter procedure, you should strive to retain the be-
havior of the default filter procedure. To do this, set the high-order bit of FilterProc’s
address when you push it on the stack for ModalDialog. This tells ModalDialog to
pass events to the standard filter after the custom filter procedure deals with them.

When ModalDialog takes over, it handles any update events related to the dialog
(caused when a control item like a button or a check box changes value) and monitors
all events until an active item is selected. It beeps if the mouse is clicked outside
the dialog window and ignores all clicks inside the window if they are not also inside

284 Using Dialog and Alert Boxes

the display rectangle of an enabled item. Mouse-down events in control items, such
as buttons. radio buttons, and check boxes, are monitored until the mouse is
released: if the mouse is not still in the item upon release, the click is ignored.

When ModalDialog finishes it returns the number of the item selected. The
application can then deal with this result as it wishes; it can then either remove the
dialog box from the screen or call ModalDialog once again.

The action a program takes when ModalDialog returns a result depends on the
type of item selected. If it was a check box, the box should be checked if it was
previously unchecked or vice versa. If it was a radio button, the radio button should
be selected and all other radio buttons in the group should be deselected. Standard
subroutines for doing this are shown in listings 8-3 and 8-4.

When a button is selected, vou should read and save the settings of the variable
items in the dialog and then dismiss the dialog by removing its window from the
screen with CloseDialog.

Key-down events are processed by ModalDialog only if there is an EditLine item
in the dialog. If the EditLine item is enabled, its item number is returned after
every key press. If it is not, no item number is returned, but ModalDialog still lets
you edit the string in the text box. It is probably best to disable EditLine items (by
adding $8000 to the item code in the item template) so that you do not have to
keep looping back to ModalDialog after every key press. Instead, after a button is
pressed to dismiss the dialog, you can use GetlText to determine the final value of
the text string.

The Tab key is used to move the text insertion cursor from one EditLine item
to the next. If you are in the last EditLine item when you press Tab, vou will
proceed to the first such item.

Mouse-down activity in EditLine items is automatically handled by ModalDialog
in accordance with the LineEdit specifications described earlier. In fact, Modal-
Dialog calls LineEdit to handle these events.

Modeless Dialog Boxes

A modeless dialog box is a bit more difficult to handle than a modal dialog box.
When a modeless dialog box is on the screen, the user is not restricted from
performing other operations (such as activating another window or selecting a desk
accessory) before dismissing it to remove it from the screen. In this respect, a
modeless dialog box is like any other standard window, although it contains various
controls. Unlike a modal dialog box or an alert box, it does not retain control until
vou select an active item. You simply feed it events one at a time and it returns a
Boolean result that tells you whether the event related to the dialog box or not.
To create a modeless dialog window, you must use NewModelessDialog as follows:

PLA ;space for result (long)
PLA
PushPtr dBoundsRect ;:Pointer to window rectangle

Using Dialog Boxes 285

Figure 8-4. A Modeless Dialog Box

Search for Text

Modeless|

[Begin Search

.= o

PushPtr dTitle sPointer to dialog title
PushLeng dBehind iPointer to window in front

i of dialog window
PushWord dF lag iWindow frame bit wvector
PushLong dRefCon ;reference constant
PushPtr dFullSize iPointer to zoom rectangle
_NewModelessDialog
PopLong DialogPtr ipop pointer to dialeg

Most of these parameters are self-explanatory. Normally, you set dBehind to -1 to
bring the modeless dialog hox up in front of all other windows, The dFlag vector
has the same meaning as the window frame vector in a NewWindow call: most
dialog windows have only a close box and a title area.

The parameters passed to NewModelessDialog do not include the items to be
drawn in the dialog window. You must add these by making calls to GetNewDItem
or NewDItem.

The program in listing 8-5 shows how to define a modeless dialog box. The box
it defines is shown in figure 8—4.

The Dialog Manager makes it somewhat easier to deal with a modeless dialog
box than a standard window. Whenever your program calls TaskMaster or Get-
NextEvent, it should call IsDialogEvent to determine whether the current event
relates to the modeless dialog box (see the program in listing 8-6):

PHA ;Space for Boolean result
PushPtr EventRecord ;TaskMaster /GetNextEvent record
_IsDialogEvent

PLA ;Pop true/false result

286 Using Dialog and Alert Boxes

The EventRecord is the one used with TaskMaster or GetNextEvent. Listing 8-6
shows how to handle events in modeless dialog boxes.

If the result is false, the event was not dialog-related and can be processed as
usual. This includes events for which TaskMaster returns winMenuBar or win-
Special, unless it was caused by a key-down event (that is, unless the user entered
a keyboard equivalent),

Special edit items involving modeless dialog windows can be handled by calling
a subroutine like the one in listing 8-7. In brief, it checks to see if the active window
is the modeless dialog window; if it is, it handles the special edit item by calling
one of the following functions:

DigCut Cut the selected text and put it on clipboard
DlgCopy Copy the selected text to the clipboard
DlgPaste Transfer the text on clipbeoard to the document
DigDelete Erase the selected text; clipboard not affected

(There is no similar function for handling the special Undo item. An application

should handle Undo by canceling the previous edit operation.) All these dialog

editing functions require only one parameter, the handle to the dialog record.
IsDialogEvent returns true for the following events:

+ Activate or update events for a dialog window
« Mouse-down events in the content region of an active dialog window

+ Any other event when a dialog window is active

When IsDialogEvent returns a true result, you normally call DialogSelect to process
it. If you are using TaskMaster, however, you should check first to see if the
TaskMaster result was winMenuBar or winSpecial. For either result, TaskMaster
will have highlighted the menu title, so turn off highlighting with HiliteMenu (see
chapter 7). DialogSelect does not do this for you.

The winSpecial results should then be passed directly to DialogSelect for pro-
cessing. If the modeless dialog box has an EditLine item, the item will be edited
accordingly. The winMenuBar results should be dealt with separately because
DialogSelect will not know what to do with them.

Here is how to call DialogSelect:

PHA ;Space for Boolean result
PushPtr EwventRecord ;Taskmaster/GetNextEvent recor
PushPtr theDialog ;Dialog pointer returned here
PushPtr i1temHit :Item number returned here
_DialogSelect

PLA :Get true/false result

RTS

Using Dialog Boxes 287

itemH1t Ds 2 sltem number returned
theDialog DS 4 iPointer to dialog record

DialogSelect takes the event, processes it, and returns a Boolean result indicating
whether it related to an enabled dialog item. If the result is false, it did not relate
to an enabled item. and you do not have to do anything further. DialogSelect always
returns a false value if you pass it a window update or activate event; these events
are processed internally.

If the result is true, the itemHit and theDialog variables will contain the number
of the item selected and a pointer to the active dialog record. You can then deal
with the result in the same way you deal with a result returned by a call to
ModalDialog for a modal dialog box. DialogSelect always returns a true result in
situations in which ModalDialog would have reported an item-related event to you.

USING ALERT BOXES

There are four Dialog Manager functions for displaying alert boxes on the screen:

» Alert
* StopAlert
» NoteAlert

* CautionAlert

You call each of these functions in exactly the same way. The only differences-among
them are the icons they display in the top left corner of the box. Alert displays no
icon at all; StopAlert displays an octagonal stop sign with a hand in it; NoteAlert
displays a talking person; CautionAlert displays a yield sign with an exclamation
mark in it.

The program in listing 8-8 shows how to create and deal with an alert box.

Alert boxes are easy to use, because all screen and event activities are handled
by a single function. This function creates the alert record, draws the alert box and
its items, interprets events until an active item is selected, erases the alert from the
screen, and disposes of any memory used by the alert record. The function returns
the item number selected. All you have to do is monitor this result and take whatever
action is appropriate. Compare this with dialog boxes, which require you to use
different functions to create and dispose of the dialog.

To display an alert box, pass pointers to an alert template and a filter procedure
to the function:

288 Using Dialog and Alert Boxes

PHA ;space for result
PushPtir AlertTemplate jPointer to alert template

PushPtr FilterProc ;Pointer to filter procedure
_Alert
PLA ;1D of item selected

Alert handles mouse clicks much as ModalDialog handles them. That is, mouse
clicks outside the alert box produce error beeps, and clicks in disabled items are
ignored. Alert returns the value of any enabled item that is selected. For an alert
box, only button items should be enabled.

An alert template, like a dialog template, includes a list of items that are to
appear in the alert box. Its exact structure is as follows:

Dc ['t,l,b,r! iAlert box rectangle

DC I'"AlertID! 3 ID number for alert box

bC I[1'Stagel! iFirst stage alert

DC I1'S5tage2! ;Second stage alert

Dc [1'Stage3! ;Third stage alert

bc [1'Stage4! ;Fourth stage alert

Dc [4'1temt? ;Pointer to 1st item template
Dc I4'[tem2! ;Pointer to 2nd item template
joln [4'[temN?! ;Pointer to Nth item template
DC 1410 ;zero terminator

The item templates referred to in an alert template are identical to the ones discussed
earlier in connection with modal dialog boxes.

Stage bytes make up an important parameter in an alert template. They define
the behavior of the alert in each of four different stages. When vou use the alert
box for the first time, it enters the first stage. As vou keep calling it, it progresses
through the second, third, and fourth stages, in that order. Thereafter, the alert box
always behaves as if it was in the fourth stage. You can reset the alert stage to 0
with ResetAlertStage (no parameters).

As shown in figure 8-5, the characteristics associated with each stage are what
the default button is to be, what sound is to be emitted, and whether the alert box
is to be drawn.

For a given stage, the first two bits (0 and 1) contain a sound number from 0 to
3. In most cases, this number represents the number of times the speaker is to
beep when an alert is called up at that stage level. It is possible, however, to invoke
a custom sound procedure that interprets these numbers differently. Refer to the
Apple 1lcs Toolbox Reference for instructions on how to do this.

Bit 7 indicates whether the alert box is to be drawn on the screen. You will
usually set this bit to 1 (display the box), but you can set it to 0 if you do not want
the alert to be displayed at that stage level.

Bit 6 controls which of two buttons is to be the default button. The default button
is the one selected when Return is pressed from the keyboard. If the bit is set to

Using Alert Boxes 289

Figure 8=5. The Format of a Stage Byte in an Alert Template

6|5 |4|312]|1]0

n t' 1
R e o sound number (0 to 3)

ID of default button
minus 1

1 = draw alert box

0 = don't draw box

0, the first button (usually an OK button) is the default; if it is 1, the second button
(usually a Cancel button) is the default.

In most applications you will probably want all stages to be equivalent, so all four
bytes will be the same. For example, if you want to beep the speaker once, display
the alert box, and make the Cancel button the default button, use a stage byte of
$C1. This sets the sound number to 01 (one beep), sets bit 7 to 1 (draw the box),
and sets bit 6 to 1 (the default is #2, Cancel).

The filter procedure used by an alert box is similar to the one described earlier
for dialog boxes. Pushing a 0 value tells the function to use the standard filter
procedure. It converts a Return keypress into the click of the default button in the
alert box.

REFERENCE SECTION
Table R8-1: The Major Functions in the Dialog Manager Tool Set ($15)

Function Stack Description of
Function Name Number Parameters Parameter
Alert 517 result (W) 1D of item selected
AlertTemp (L) Ptr to alert template
FilterProc (L) Ptr to filter procedure
290 Using Dialog and Alert Boxes

E unction Name
CautionAlert

CloseDialog

DialogSelect

DialogShut Down
DialogStartup

Disable DItem

DlgCut
DlgCopy
DlgDelete
DlgPaste

EnableDItem

FindDItem

GetDefButton

Function
Number

S1A

S0C

511

503
502

539

524

Stack
Parameters

Deseription of
Parameter

result (W)

AlertTemp (L)
FilterProc (L)
TheDialog (L)

result (W)

EventRecord (L)
TheDialog (L)
ItemHitPtr (L)
[no parameters]
UserlD (W)
TheDialog (L)
ItemID (W)
TheDialog (L)
The Dialog (L)
TheDialog (L)
TheDialog (L)
TheDialog (L)
ItemID (W)
result (W)
TheDialog (L)
ThePoint (L)
result (W)

TheDialog (L)

1D of item selected
Ptr to alert template
Ptr to filter procedure
Ptr to dialog record

Boolean: enabled item
chosen?

Ptr to event record

Ptr to space for dialog ptr

Ptr to space for item number

1D tag for memory allocation

Ptr to dialog record
ID of item to disable
Ptr to dialog record
Ptr to dialog record
Ptr to dialog record
Ptr to tiia]ug record
Ptr to dialog record
ID of item to enable
ID of item at point
Ptr to dialog record
Point to check (global)
1D of default item

Ptr to dialog record

Reference Section

291

Function Stack Description of
Function Name Number Parameters Parameter s o
GetDItemBox %28 TheDialog (L) Ptr to dialog record
ItemID (W) ID of dialog item
ItemBoxPtr (L) Ptr to returned rectangle
GetDItemType %26 result (W) [tem type code
TheDialog (L) Ptr to dialog record
[temID (W) ID of dialog item
GetDItemValue $2E result (W) Value of dialog item
TheDialog (L) Ptr to dialog record
ltemlD (W) 1D of dialog item
GetlText $1F TheDialog (L) Ptr to dialog record
[temID (W) ID of dialog item
TheString (L) Ptr to result string space
GetNewDlItem $33 TheDialog (L) Ptr to dialog record

ItemTemp (L) Ptr to item template space

GetNewModalDialog $32 result (L) Ptr to dialog record

DialogTemp (L} Ptr to dialog template
Hide DItem $22 TheDialog (L) Ptr to dialog record
ItemlID (W) ID of dialog item
IsDialogEvent $10 result (W) Boolean: dialog-related?
EventRecord (L) Ptr to event record
ModalDialog S0F result (W) ID of selected item
FilterProc (L) Ptr to filter procedure
NewDItem 30D TheDialog (L) Ptr to dialog record

[temlD (W)
ItemBect (L)

Item ID number

Ptr to item rectangle

ItemType (W)
ItemDescr (L)

292 Using Dialog and Alert Boxes

Item type code

Item descriptor

Function Stack Description of
Function Name Number Parameters Parameter
ItemValue (W) Item value
ItemFlag (W) Item flags

NewModalDialog

NewModelessDialog

NoteAlert

ParamText

SellText

SetDefButton

ItemColorPtr (L)

$0A result (L)

DBoundsRect (L)}

DVisible (W)
DRefCon (L)

$0B result (L)

DBoundsRect (L)

DTitlePtr (L)

DBehindPtr (L)

DFlag (W)
DRefCon (L)

DFullSizePtr (L)

519 result (W)
AlertTemp (L)
FilterProc (L)
ParamOPtr (L)
Param1Ptr (L)
Param2Ptr (L)
Param3Ptr (L)
TheDialog (L)
ItemID (W)
StartSel (W)
EndSel (W)
TheDialog (L)
DefButlD (W)

$1B

$21

$38

Ptr to item color table
Ptr to dialog record
Ptr to dialog rectangle
Boolean: is it visible?
Reference constant

Ptr to dialog record
Ptr to window rectangle
Ptr to dialog title

Ptr to window in front
Window frame bit vector
Reference constant

Ptr to zoom rectangle
ID of item selected
Ptr to alert template
Ptr to filter procedure
Ptr to "0 string

Ptr to "1 string

Ptr to “2 string

Ptr to "3 string

Ptr to dialog record

1D of dialog item

Start of selection range
End of selection range
Ptr to dialog record

ID of new default button

Reference Section

293

Funetion Stack Description of
Function Name Number Parameters Parameter .
SetDItemBox $29 TheDialog (L) Ptr to dialog record
ItemlID (W) ID of dialog item
ItemBoxPtr (L) Ptr to new rectangle
SetDItemType $27 ItemType (W) New item tvpe code
TheDialog (L) Ptr to dialog record
ItemID (W) ID of dialog item
SetDItemValue $2F ItemValue (W) New value for item
TheDialog (L) Ptr to dialog record
ItemID (W) ID of dialog item
SetlText $20 TheDialog (L) Ptr to dialog record
ItemID (W) ID of dialog item
TheString (L) Ptr to new text string
ShowDItem $23 TheDialog (L) Ptr to dialog record
ItemID (W) ID of dialog item
StopAlert 518 result (W) ID of item selected

Table R58-2:

AlertTemp (L)
FilterProc (L)

Dialog Manager Error Codes

Ptr to alert template

Ptr to filter procedure

Error

Code

$150A
$150B
$150C
150D

The item type code is invalid.

The Newltem call was unsuccessful.

The specified item was not found.

The active window is not a modal dialog box.

294 Using Dialog and Alert Boxes

Table R8=3: Useful Functions in the LineEdit Tool Set ($14)

Function Stack Description of
Function Name Number Parameters Parameter
LEShutDown 303 [no parameters|
LEStartup 502 UserlD (W) ID tag for memory allocation
DPAddr (W) Address of 1 page in bank 0

Reference Section 295

Listing 8-1:

Defining and Handling a Modal Dialog Box

Modal

START
Using DlogData

; Create the modal dialeg box:

GoModal

; If we reach here,

PHA
PHA
PushPtr DialogBox
_GetNewModalDialog
PopLong TheDialog

PHA

PushLong #0
_ModalDialeg
PLA

CHMP 1

BEG GoModal1
CHMP #20

BCC Toggle

;Space for result

jspace for result
istandard filter .procedure
;Handle activity in box
:Get the item selected

;0K button?
;¥es, so branch

;Checkbox?
;¥Yes, so branch

1t must be a radioc button.

; When you turn one radio button on, all other family
; members are turned off automatically:

GoModal!

TAX

Pushlord #1
PuﬁhLung TheDialog
PHX

_SetltemValue

Jmp GoModal
ANOP

1+Turn selected radio button on

sPush selected item
:Redraw with new value
;Go back to dialog

; Here 1s where you would inspect and save the settings of

- e

PushLong TheDialeg
_CloseDialog
RTS

296 Using Dialog and Alert Boxes

all the variable parameters so thal you can use them in
another part of the program. Use GetltemValue and GetlText
to determine the value for each i1tem.

;Get rid of dialeg

; Toggle the setting of the check box:

Toggle ANOP

TAX
PHX

PHA

PushLong TheDialog
PHX

_GetltemValue

PLA

EOR £$01
PLX
PHA
PushLong TheDialog
PHX
_SetltemValue
JMP GoModal
END
DlogData DATA
TheDialeg DS 4

; Dialog Template:

DialegBox DC 1'30,100,135,465"
DC 1'$FFFF!
Dc 1410
DC 14'Ditemil?
DC 14'Ditem2!
DC [4'DIitem3'
DC I4'Ditemd!
DC 14'DltemS!
3] & [4'DItem&!
Dc [4'Dltem?7!
DC [4'DitemB!
Dc I14'Ditem9!
DCc [4'Ditem10"
Dc 14'Ditem11?
DC [14'Dltemi2!
DC 14'Ditem1 3!
DC I14'Ditem14"
DC [4'Ditem15!
DC [4'DItemiB!
DC I14'DItem1 7!
DC 14'Ditem18!

:Save 1D

;Space for result
sPush item ID

:Get current value
iToggle value bit

:Get ID back
1New value

sredraw with new wvalue

;Back to dialeg

;True = wvisible
srefcon

Reference Section

297

Ditemi

ButtonStr

Ditem2

Stat1

Ditem3

State

Dlitem4

Radiol

DitemS

DC
DC
pc
DC

STR

DC
DC
DC
DC
DC
Dc
DC

STR

Dc
DC
Dc
DC
DC
DeC
DC

STR

DC
DC
DC
DC

14'Ditem19!
14'Dltem20"
14'Ditem21?
14100

12111
I12'80,300,100,360"
I2'Buttonltem!
14"ButtenStr!
1210t

[a2rae

I4rqge

IDK'

1212
12'5,90,14,300"
12'StatText+$8000"
14'Stat1?

12101

1210¢

14101

'"Communications Parameters!

[2'3!
12"17,10,27,100"
[2'StatText+$8000!
I14'Stat2!

[2voe

l2'0!

14101

'Baud Rate:!

12141
12v17,100,27,180!
I2'"Radioltem!'
l4'Radiel!

1200

2y

I4vQ?

r300°

[2v5¢
I12'17,180,27,260!
[2'Raedioltem!'
l4'Radio2!

298 Using Dialog and Alert Boxes

;Item ID (1 = default button)
;Display rectangle (local)
iltem type code

sName of button

;Not used

iltem flag (default)

;iColor table ptr (default)

;Item ID

iDisplay rectangle (local)
iltem type code (disabled)
1Static text string

;Item value {unused)

jltem flag (default)
iColor table ptr (default)

;Static text siring

sItem ID

;jDisplay rectangle (local)
;ltem type code (disabled)
;Static text string

;1tem value (unused)

jltem flag (default)
;Color table ptr (default)

;5tatic text string

;Item ID

iDisplay rectangle (local)
iltem type code

;Name of button

;Value: 0 = off /1 = on
;Baud rate family

iColor table ptr (default)

;Item 1D

;iDisplay recltangle (local)
iltem type code

;Name of button

Radio2

Ditemb

Radio3

Ditem?

Stat3

DitemB

Radiod

Ditem9

RadioS

Ditem10

Dc
pc
M

STR

DC
Dc

DC
DC
Dc
DC

STR

DC
DC

DC
DC
Dc
DC

STR

DC
DC
DC

DC

21
211
410!

1200

12'g!
12"17,260,27,340!
l12'Radioltem!’
I4'Radiold!’

120!

12111

14'0!

'2400"

1217
12129,10,39,100"
12/StatText+$8000"
141S1at3!

1210°

1210¢

1410¢

'Data Bits:!

128!
12v29,100,39,150"
12'Radicltem!
l4'Radiod!

121

[2t21

1440

181

[2'9!
12129,150,39,200°"
l2'Radiocltem!
[4'"Radio5!

[210!

[212

140!

17

210!
I12'41,10,5%,100!
[2'StatText+$8000"
14'Stat4!

I2v1)

:Value: 0 = off / 1 = on
;Baud rate family
iColor table ptr (default)

s1tem ID

;Display rectangle (local)
iltem type code

;Name of button

sValue: 0 = off / 1 = on
;Baud rate family

;Color table ptr (default)

s1tem 1D

;Display rectangle (local)
;ltem type code (disabled)
;Static text string

s1tem value {unused)

;ltem flag (default)
iColor table ptr (default)

jStatic text stiring

jltem ID

;Display rectangle (local)
sltem type code

sName of button

sValue: 0 = off / 1 = on
;Data bits family

;Color table ptr (default)

sI1tem 1D

;Display rectangle (local)
jltem type code

;Name of button

sValue: 0 = off / 1 = on
jData bits family

;Color table ptr (default)

iltem ID

;:Display rectangle (local)
iltem type code (disabled)
;:Static text string

i1tem value (unused)

Reference Section 299

Stat4

Ditem11

RadioB

Ditem12

Radio7

Ditem13

Stats

Ditem14

RadioB

Dlitem1S

STR

pc
Dc
DC
DC
DC

bC

STR

DC
DC
DC
DC
DC

1eto!
1410"

'Stop Bits:!

21111
[2'41,100,51,150"
[2'Radialtiem!
I4'RadioB!

[2ry

[213!

[410?

L 1

[2112¢
12'41,150,51,200°"
12'Radioltem!
14'Radio?!

12'0!

123

140!

-2

12m13¢
12'53,10,63,100"
[2'StatText+$8000"
I4'5tat5s!

[2v10

[2e0

I4v0?

'"Parity:!

[2v141
12'53,100,63,180"
I2'Radioltem!
l14'Radio8!

12m1

12'4!

14100

'Nane!

[121151
I2'53,180,63,260"
[2'Radioltem!
[4'Radio9!

[2+q!

300 Using Dialog and Alert Boxes

jl1tem flag (default)
sColor table ptr (default)

;5tatic text string

sltem ID

iDisplay rectangle (local)
sltem type code

;Hame of button

iValue: 0 = off /1 = on
iStop bits family

iColor table ptr (default)

sltem 1D

iDisplay rectangle (local)
ijltem type code

sName of button

svalue: 0 = aff / 1 = on
i5top bits family

;Color table ptr (default)

;Item ID

iDisplay rectangle (local)
;Item type code (disabled)
iStatic text string

;ltem value (unused)

iltem flag (default)
;Color table ptr (default)

iStatic text string

;1tem ID

iDisplay rectangle (local)
iltem type code

sName of button

;Value: 0 = off / 1 = an
iParity family

iColor table ptr (default)

s1tem ID

iDisplay rectangle (local)
;ltem type code

;Name of button

sValue: 0 = off / 1 = on

Radio9

Ditemit

Radioil

Ditem17

Check1

DitemiB

Check2

Dltem19

Check3

Ditem20

DC
De

STR

DC

DC
DC
DC
DC
DC

STR

DC
DC
Dc
Dc
pc
Dc
DC

STR

214"
14101

'Even!

[12"16!
[2'53,260,63,340!
|2'Radioltem!
l4'"Radiol10!

[2'41

1214

140"

'Odd!

12117
12'65,10,75,120!
12'Checkltem!
14'Checkil!?

1210

12100

140!

'Filter!

[2118!
[2'65,120,75,230"
[2'Checkltem!
[4'Check2!

[214)

[2'0!

140!

'XON/XOFF!

12119}
12165,230,75,340!
[2'"Checkltem!
14'Check3!

1200

[2+o

1410

'Line Delay!

1a2rap
12+79,10,89,115!
[2'StatText+$8000°
I4'S5tate!

jParity family
;Color table ptr (default)

:ltem ID

;Display rectangle (local)
iltem type code

;Name of button

sValue: 0 = off /1 = on
;Parity family

;Color table ptr (default)

;Item ID

sDisplay rectangle (local)
jltem type code (disabled)
;jStatic text string
sValue: 0 = off / 1 = on
jltem flag (default)
;Color table ptr (default)

s I1tem ID

;Display rectangle (local)
jItem type code (disabled)
;Static text string
iValue: 0 = off / 1 = on
;ltem flag (default)
iColor table ptr (default)

;1tem [D

;Display rectangle (local)
;1tem type code (disabled)
;Static text string
1Value: 0 = off /1 = an
iltem flag (default)
;Color table ptr (default)

;1tem ID

;Display rectangle (local)
;ltem type code (disabled)
;Static text string

Reference Section 301

Statb

Ditem21

EditString

Listing 8-2:

STR

END

1210
12101
1410

'Download File:!

12121
12177,120,90,275"
[2'EditLine+$8000"
14'EditString"
12115!

1210

1410

'Messages'

;Item value (unused)
;item flag (default)
;:Color table ptr (default)

1Static text string

i1Item 1D

;Display rectangle (local)
;1tem type code (disabled)
;Editable text string
;Maximum string length
:1tem flag (default)
:Color table ptr (default)

A Filter Procedure for ModalDialog

v o wE WS @ e e e

302

This is a custom filter procedure for ModalDialog.
On entry, the stack is configured as follows:

result: WORD
theDialog: LONG
theEvent: LONG
itemHit: LONG

returnfAddr: 3 BYTES

Return a TRUE result if ModalDialeg is to exit with itemHit
or a FALSE result if it is to process the event itself.

To use a filter procedure, pass a pointer to it to ModalDialog.
Set the high bit of the pointer to daisy chain to the standard
filter which handles keyboard editing commands and converts a
Return press to a click of the default button. Here's how to

do this:

PHA
LDA
ORA
PHA
LDA
PHA

#*FilterProc

#%8000

*FilterProc

_ModalDialog

;Address high
1 Set hlgh bit

;Address low

This particular filter effectively removes all non-editing
control characters so they won't appear as inverse guestion
marks in an EditlLine item.

Using Dialog and Alert Boxes

FilterProc START

i Lthese are direcl page addresses after PHD/TSC/TCD:

01dDB EQU $01

01dDP EQU O1dDB+1

ReturmAddr EQU 0ldDP+2

itemHit EQU FeturnAddr+3

theEvent EQU itemHit +4

IheDlaiug EQU theEvent+4

result EQuU theDialog+4
FPHE ;jSave data bank register
PHK jAllow absclute addressing
PLB
PHD ;Save direct page
TSC
TCD ;Align d.p. with stack
LDA [theEvent] 1Get "what" from event record
cme #3 ;Key down event?
BHE Exit sMo, so branch
LDY w2
LDA [theEvent],Y ;Get ASCI] code
AMD #3007F ;Convert to std ASCII
cmpP #50020 ;Control character?
BCS Exit +Mo, so branch

;Filter all control chars, except CR or ones used by LineEdit:

LDX 0

CtrlLook CHMP CtrlTable,X 3Is it in the list?
BEQG Exit ;¥Yes, so branch
INX iMove to next entry
INX
cPX TblSize ;A1 end of table?
BNE CtrlLook ;No, so branch
LDA #0 iConvert to "null" event
STA [theEvent]

Exit LDA #0 :False result

Exit1 STA result
PLD ;Restore d.p.
FLB ;Restore data bank

Reference Section 303

; Discard input parameters and move stack up by 12 bytes:

LDA 2,
STA 14
LDA 1
STA 1

TsC
CLC
ADC f12
TCS

RTL

i This table contains all the control characters
i that are specially treated by LineEdit, and CR.

CtrlTable DC I1'$06" ;Delete char below cursor
pc [rs08! iLeft-arrow (backspace)
il Irg09! ; Tab
DC I'soD? ;CR
DC [1$15" iRight-arrow (forward)
DC I's18! ;Control-X (erase line)
DC [1$19¢ ;Control-Y (clear to EOL)
TblSize DC ['"TblSize-CtrlTable!
END

Listing 8=3: The CheckHit Subroutine to be Called When ModalDialog Returns
a Check Box Item

iCall CheckHit in response to a hit in a dialeg
check box. CheckHit changes the value of the
item from 0 to 1 (1f it is off) or from 1 to O
(1f it is on).

check box item in question.

TheDialog is a dialog pointer stored in

H
:0n chtry.lﬁ contains the 1D number of the
i
H
3 the GlobalData data segment.

CheckHit START
Using GlobalData

TAX
PHX ;Save ID

304 Using Dialog and Alert Boxes

PH& iSpace for result
PushLong TheDialog

PHX sPush item ID
_GetltemValue

PLA

EOR 2801 s Invert value bit
PLX :Get 1D back

PHA sHew value
PushLong TheDialog

PHX

_SetltemValue sredraw with new wvalue
RTS

END

Listing 8—4: The RadioHit Subroutine to be Called When ModalDialog Returns

a Radio Button [tem

Call RadioHit in response to a hit in a dialog
radio button. RadioHit sets the value of the
item to 1. This causes all other family members

: to be turned off.

¥

wr e e

s0n entry, A contains the 1D number of the
3 radic button item in question.

;TheDialog is a dialeg pointer stored in

3+ the GlobalData data segment.

RadioHit START
Using GlobalData

TAX ;Save item ID in X
PushWord #1 31 = on

PushLong TheDialog

PHX ;Push item ID
_SetltemValue isredraw with new wvalue
RTS

END

Reference Section

305

Listing 8=5: How To Create a Modeless Dialog Box

i Create a modeless dialog box:

ModelLess START
Using DlogData

FHA ;Space for result

PHA

PushPtr DialogRect ;Content rectangle

PushPtr DlogTitle ;Title of window

PushLong #-1 +Ptr to window in front (-1 = top)
PushWord #%1100000010100000 ;frame: close, title, drag, visibl
PushLong #0 srefcon

PushLong #0 ;zoom rectangle (O=defaultl)

_NewModelessDialog
PopLong TheDialeg

PushLong TheDialog
PushPtr DItemi
_GetNewDItem

PushLong TheDialog
PushPtr DItem2
_GetNewDItem

RTS

END

DlogData DATA

DialogRect DC 1+30,60,100,425"
DlogTitle STR 'Search for Text! ;title
TheDialeog DS 4 ;Pointer to modeless dialog
3 Dialog Template:
Dlitemi DC 1219 sltem ID (1 = default buttoen)
Dpc 12'40,140,60,250' ;Display rectangle (local)
DC [2'Buttonltem! ;1tem type code
DC l4"ButtonStr! ;Name of button
DC [2rgy +Not used
DC [2*q! jItem flag (default)
DC 410! iColor table ptr (default)
ButtenStr GSTR 'Begin Search!
Ditem2 DC 122! ;1tem 1D
o] 12'17,100,30,320' ;Display rectangle (local)
Dc 12'EditLine+$8000' ;Item type code (disabled)
DC 14'EditStiring! ;Editable text string

DC 12120 ;Maximum string length

DC 120 ;Item flag (default)

DC 1410 ;Color table ptr (default)
EditString STR i ;Start with null string

END

Listing 8-6: How To Handle Events in Modeless Dialog Boxes

; Use this type of event loop when a modeless
; dialog may be active.

EvtLoop START
Using Dloghata

PHA

PushWord #$FFFF ;All events

PushPtr TaskRec

_TaskMaster

PHA jspace for result

PushPtr TaskRec

_lsDialogEvent ;Is it for modeless dialog?
PLA ;Get Boolean

BEQ EvtLoop1 i:No, so branch

; If the keypress was a menu item keyboard equivalent, turn the
; menu highlighting off. DialogSelect doesn't do this for you.

PLA :Get the TaskMaster result

CMP #wlnMenuBar :Standard menu item?

BEQ TitleOff :Yes, so fix menu title

cHMP #wlinSpecial ;Special menu item?

BNE DoModeless 1Mo, so do nothing
TitleOff PushWord #0 ;Highlighting off

PushWord TaskData+2 1Get menu ID

_HiliteMenu

LDA TaskData :Get menu item ID

cmp #256 ;Special editing item?

BCC DoModeless ;Yes, so give it to DialogSelect

; Handle non-editing keyboard equivalents here,
: then return to the event loop.

BRL EvtLoap
DoModeless PHA jspace for Boolean result
PushPtr TaskRec ;Task record pointer

Reference Section 307

PushPtr DlogActive ;Dialeg pointer returned here

PushPtr ItemHit s1tem number returned here
_DialogSelect

PLA sWas it handled?

BEQ EvtlLoop 1Mo, so branch

The event is dialog-related if we reach here. DoDialog is a
subroutine you would write to handle dialeog activity. It can
get the relevant dialog pointer from DlogActive and the item
number from ltemHit.

T wE ww we

JSR DoDialeg ;Handle dialeog activity
BRL EvtlLoop
EvtLoop1 PLA :Getl TaskMaster result
3 [handle TaskMaster result in usual wayl
BRL EvilLoop ;Back to event loop

DoDialog ANDP
$ [this subroutine handles dlalng selections]
RTS

END

DlogData DATA

DlogActive DS 4

ItemHit Ds 2

EventRec ANOP ;Event record

What DS 2 sEvent code

Message DS 4 jEvent result

When DS 4 i1Ticks since startup
Where DS 4 iMouse location (global)
Modifiers DS 2 iStatus of modifier keys
TaskData DS 4 ;TaskMaster data
TaskMask DC I4'$00001FFF! ;TaskMaster handles all

END

Listing 8-T7: The Type of Subroutine a Program Should Call To Handle Editing
When a Modeless Dialog Box is Active

This subroutine handles special edit items for
modeless dialeog boxes. If the carry flag is set on
exit, the edit command was handled.

e o ww e

The pointer to the dialog is stored at TheDialeg.

308 Using Dialog and Alert Boxes

DoEditing

3+ Check to

ANDOP

see 1f the modeless dialog box is active:

PHA

PHA

_FrontWindow ;Get pointer to active window
PLA

PLX ;Compare active window with
cmMP TheDialog ; dialog window.

BNE NoDlogEdit

cPX TheDialog+2

BNE NoDlogEdit

;Pass control to the appropriate edit item handler:

NoDlegEdit

EditTable

DUndo

DCut

DCopy

DPaste

DClear

SEC
LDA
SBC
ASL
TAX
JSR

SEC
RTS

cLC
RTS

RTS

TaskData +Get menu ID
#250 s:Convert 250-254 to 0-4
i ;x2 to step into table

(EditTable,X)

+SEC means "was handled"

;CLC means "not for dialog"

1'DUnda’ ;item 250 (Undo)
I'DCut! ;item 251 (Cut)
I'DCopy" jitem 252 (Copy)
1'DPaste! sitem 253 (Paste)
['DClear! ;item 254 (Clear)

;(there is no standard unde)

PushLong TheDialog

_DlgCut

RTS

PushLong TheDialog

_DlgCopy

RTS

PushLong TheDialog
_DlgFaste

RTS

PushLong TheDialog
_DlgDelete

RTS

Reference Section 309

Listing 8-8: Defining and Handling an Alert Box
i Bring up the alert box and wait for a button push:
DoAlert START
Using AlertData
PHA ;space for result
PushPtr AlertBeox
FushLong #0 ;0=default filter procedure
_Alert
PLA iGet item ID
RTS
AlertData DATA

3 Alert box template:

AlertBox

Alertlteml

OKText
Alertltem2

CancelText

Alertltem3

DC 1'60,70,120,400' :Alert rectangle

1] I ;Alert 1D

DC 14'$C3C2C1CO! ;5lage5 bytes

Dc [4'Alertiteml! iPointer to ttem #1

Dc [4'Alertltem2! ;iPointer to item #2

DC [4'Alertltem3’ iPointer to item #3

D [4vqQy sTerminator

DC [a2 1 ;1tem 1D

DC 12'30,80,50,140' ;Display rectangle (local)
bC [2'Buttonlitem! ;ltem type code

DC 14'0KText! sName of button

DC [2'o sltem value (off)

DC 2101 sltem flag (default)

De 14101 iColor table ptr (default)
STR ‘oK

DC [212! ;ltem ID

DC 12'30,180,50,240" iDisplay rectangle (local)
DC 12'Buttonitem!’ iltem type code

DC l4'CancelText! ;Name of button

DC 120! ;1tem value (off)

DC 120! iltem flag (default)

oc 140! ;Color table ptr (default)
STR '"Cancel!

DC 12'*31 sitem ID

Dc I2'10,80,22,320' ;Display rectangle (local)
DC [2'StatText+$8000' ;item type code (disabled)
DC [4'StatString! ;S5tatic text string

DC 120! ;Item value (unused)

Dc 1210 iltem flag (default)

Dc 14107 ;Color table ptr (default)

i "0 is a placeholder for a filename (Use ParamText to fill it in).

StatStrlng

STR
END

310 Using Dialog and Alert Boxes

'Do you want to erase "07!
¥

;Static text string

CHAPTER 9

All about Desk
AcCcessories

Desk accessories are programs (usually small utilities) that reside in memory at the
same time as a primary Gs application. If the application is properly designed, a
user can call up a desk accessory at any time, use it, return to the application, and
continue on as if the application had never been interrupted. It is not necessary to
restart the application from the beginning.

Popular desk accessories are programs that provide features that few applications
support directly: a calculator, note pad, clock, and appointment calendar, for ex-
ample.

The Gs supports two types of desk accessories: classic desk accessories (CDAs)
and new desk accessories (NDAs). As will be discussed, CDAs are available to any
application but NDAs work only with applications which take advantage of the
desktnp environment.

To call up a CDA, press three keys on the keyboard simultaneously—Control-
OpenApple-Esc. This causes an interrupt signal, which the Gs services by clearing
the text screen and displaying a menu containing a list of the names of up to fourteen
CDAs to choose from. You can activate a specific CDA by using the arrow keys to
highlight the CDA name and then pressing Return, There are two standard CDAs
in ROM: the Control Panel (used to configure the system hardware and set pref-
erences) and the Alternate Display Mode (used to enable or disable software shad-
owing of the secondary text screen from $800 to $BFF).

You can access the CDA menu any time 65816 interrupts are not disabled (with
an SEI instruction), which is most of the time. Thus, CDAs can be used with any
s application, including traditional Ile-style applications and the new-style appli-
cations that work in the desktop environment.

NDAs, on the other hand, are available only to applications that use the desktop
environment supported by the Gs tools. This is because an NDA is called up by
pulling down an “Apple” menu in the menu bar (created by the Menu Manager)
and selecting the NDA's name. Most NDAs create windows that may coexist on the

311

screen with windows created by the application; the user can switch between desk
accessory windows (also called system windows) and application windows in the
usual way—by clicking in the window to be activated.

The purpose of this chapter is to show how to write programs which will work
properly with desk accessories and how to write desk accessory programs them-
selves. This involves a study of a tool set called the Desk Manager (tool set 3).

Before specifics are discussed. a preliminary word about the Desk Manager is
appropriate. To start it up so that you can use desk accessories, call the DeskStartup
function. Shut it down with the DeskShutDown function. Neither function requires
parameters nor generates results.

CLASSIC DESK ACCESSORIES

An application does not have to do much to support classic desk accessories. It just
cannot disable interrupts with an SEI instruction for long periods of time. When
interrupts are disabled, the Gs ignores the Control-OpenApple-Esc keyboard se-
quence, so the CDA menu will not appear.

Some programs may need to disable interrupts, but usually only for brief periods
of time. If you are writing such a program, be sure to execute a CLI (clear interrupt
fag) instruction once it is safe to re-enable interrupts.

Writing a CDA

A CDA is actually a ProDOS 16 load file that begins with a special header block
containing the name of the CDA, the address of the subroutine to be called to start
it up, and the address of the subroutine to be called when DeskShutDown is called.
Here is the assembly-language format of the header:

CDA_Header STR 'CDA Name! iName (preceded by length)
DC I14'CDA_Startup' ;Startup subroutine
DC [4'CDA_ShutDwn' ;ShutDown subroutine

The start-up subroutine contains the main code for the CDA. The Desk Manager
calls it with a JSL instruction in full native mode when you select the CDA from
the CDA menu. The subroutine must end with an RTL instruction.

The Desk Manager calls the shut-down subroutine whenever the DeskShutDown
function is called. An application normally calls this function just before it quits,
but it is also called when the operating system switches between ProDOS 16 and
ProDOS 8. The CDA'’s shutdown subroutine can terminate any background task the
accessory may be performing for the current application. In most cases, there are
no such tasks, so the shutdown subroutine is just a single RTL instruction.

A CDA can use any of the text screen areas in banks $00, 501, $E0, SE1 (offsets
$400-87FF) without fear of interfering with the current application. This is because
the Desk Manager saves these areas before displaying the CDA menu and restores

312 All about Desk Accessories

them on exit. A CDA may also use zero page (page $00 of bank $00) without
bothering to preserve its contents as long as it respects those areas used by the
system monitor subroutines. Any other memory the CDA needs must be allocated
with the Memory Manager.

If the CDA is not designed to work with all operating systems, it should check
location $E100BC to see which one is active and then take the appropriate action.
The number stored there is 300 for ProDOS 8 or $01 for ProDOS 16.

Installing a CDA

The CDA program file must have a file type code of $B9, and you must place it in
the SYSTEM/DESK.ACCS/ subdirectory of the disk from which you boot. When
you boot ProDOS 16, the system automatically installs the CDAs it finds in this
subdirectory. The maximum number of CDAs that may be installed (including the
Control Panel and Alternate Display Mode accessories in ROM) is fourteen.

If the CDA is already in memory, you can install it by passing its handle to
InstallCDA. You probably will not use InstallCDA often because it is more conven-
ient to have CDAs installed automatically at boot time.

NEW DESK ACCESSORIES

New Desk Accessories are more difficult for an application to support because they
are more intimately connected to an application. Whereas a CDA takes complete
control of the Gs until you exit it, an NDA shares the screen with the application
and will not work properly without a helping hand from the application.

To support NDAs, several tool sets must be loaded and started up before you
call the DeskStartup function: QuickDraw, Event Manager, Window Manager,
Menu Manager, Control Manager, Scrap Manager, LineEdit, and Dialog Manager.
This is necessary because an NDA must be permitted to call functions in these tool
sets without having to load RAM-based tool sets or having to execute start-up
functions.

The easiest way to make NDAs available to an application is to use a TaskMaster
event loop, because TaskMaster makes almost all necessary function calls for you.
In fact, assuming that the application calls DeskStartup at the beginning and
DeskShutDown at the end, it need only use FixAppleMenu to add the names of all
the NDAs to a standard Apple menu:

PushWord #1 ;1D number of Apple menu
_FixAppleMenu

The NDA items are assigned consecutive menu item 1D numbers, beginning with
1. (Recall from chapter 7 that numbers 1 through 249 are reserved for desk accessory
items.)

New Desk Accessories 313

If you are not using TaskMaster, NDA support is more complicated and involves
calling specific Desk Manager functions at appropriate times, The following para-
graphs describe how TaskMaster controls NDAs and what standard actions have to
be performed if a GetNextEvent event loop were used.

TaskMaster knows when the user selects a desk accessory item from the Apple
menu because MenuSelect returns a menu ID less than 250. When this occurs,
TaskMaster calls OpenNDA to open the desk accessory, an action that usually causes
a window for the NDA to appear on the screen. It then controls all window
management for both desk accessory and application windows, just as it would if
multiple application windows were on the screen.

TaskMaster handles mouse-down events in the system window content region by
calling SystemClick. SystemClick passes the event to the NDA for processing,
Standard editing events selected from the Edit menu (Undo, Cut, Copy, Paste, and
Clear with menu IDs from 250 to 254) are handled by calling SystemEdit, which
passes them to the active DA for processing.

A special close item in a File menu (menu ID 255) is handled by calling
CloseNDAbyWinPtr. This passes control to the close subroutine defined in the
NDA.

TaskMaster also allows NDAs to perform any periodic activity associated with
them by calling SvstemTask once every time it performs its internal event loop.

Writing an NDA

Like a CDA, an NDA is a ProDOS 16 load file that begins with a special header
block. The format of the header block is quite different than that for a CDA, however,
The header-block format looks like this:

Period EQU B0 +# of ticks between run actions
EventMask EQU SFFFF ijmask describing events wanted
NDA_Header DC [4"NDA_Dpen'! jPointer to open subroutine

DC [4'"MDA_Close! s:Pointer to close subroutine
DC [4"NDA_Action' ;Pointer to action subroutine
DC [4'NDA_Init? ;Pointer to init subroutine
DC [2'Period!

DC I12'EventMask!

De Crag! iPlaceholder for length
DC C'ltem Name! ;Text for the HDA name
DC C'\He##! I1'0" ;Space of ID + zero bytle

As you can see, the header begins with pointers to four standard subroutines. They
will be described below.

Following the pointers is a word indicating how often the Desk Manager will
pass a Run code to the NDA_Action subroutine. The basic unit of Period is a timer
tick (1/60th of a second), so, for example, a Period of 60 would represent one second.

314 All about Desk Accessories

There are two special Period values: 0 tells the Desk Manager to pass the Run code
as often as possible (in practice, this means once every TaskMaster loop); SFFFF
tells the Desk Manager not to pass the Run code at all.

The event mask indicates which events will cause the Desk Manager to pass an
Event code to the NIDA_Action subroutine. The meaning of the mask is the same
as that for the event mask described in chapter 5 in connection with the Get-
NextEvent and TaskMaster functions. In most cases you will set it to SFFFF (all
events).

The final item in the header is the name of the NDA, in the format expected by
the Menu Manager. It begins with two placeholders for the length and is followed
by the text of the name and then a \H** command (this reserves space for the menu
ID). A trailing 0 byte marks the end of the item definition.

The next section takes a close look at each of the four subroutines an NDA must
contain. You may want to refer to listing 9-1, which shows how to implement a
clock desk accessory, for practical implementation instructions.

NDA_Open. The NDA_Open subroutine must prepare the desk accessory for use,
but only if it is not already open. In most cases this involves creating a window for
the NDA using the NewWindow function, saving the window pointer for later use,
and marking the window as a system window using the SetSysWindow function.

Before the Desk Manager makes a call to NDA_Open with a JSL instruction, it
reserves space on the stack for a long word result. NDA_Open must return the
NDA’s window pointer here before exiting with an RTL instruction.

On entry to the NDA_Open subroutine (or the other three standard subroutines),
the 655816 will be in full native mode. At the start of the subroutine, you should
execute PHB. PHK, and PLB instructions to make the data bank register equal to
the code bank register, This lets you access memory locations within the desk
accessory code space with absolute addressing rather than absolute long addressing.
On exit. be sure to execute a PLB instruction to restore the data bank register to
its original state.

NDA_Close. The NDA_Close subroutine is responsible for shutting down the
accessory, usually by closing its window with the CloseWindow function. It does
ot return a result. This subroutine is automatically called by TaskMaster if vou
click the close box on the NDA window or if you select the special Close item from
a menu (it has a menu 1D of 255).

NDA _Init. This initialization subroutine is called whenever the application calls
the DeskStartup or DeskShutDown function. On entry, the accumulator is 0 if a
call to DeskShutDown was made; it is non-zero for calls to DeskStartup.

Most initialization subroutines do not have to do anything when DeskStartup is
called. because the NDA is not even integrated with the application at this stage.

New Desk Accessories 315

Table 9-1: Action Codes for New Desk Accessories

Action Cr.lde__ Tg.f;f_(_)

1 Event
A mouse-down, mouse-up, key-down, autokey-down, update, or
activate event took place, so process it. A pointer to the event
record is in X (low) and Y (high).

2 Run
The Period has elapsed, so perform the periodic action.

3 Cursor

The NDA window is active, so change the cursor if necessary.
4 [Reserved]
5 Undo

The special Undo item (ID 250) was selected, so process it.
6 Cut

The special Cut item (D 251) was selected, so process it.
7 Copy

The special Copy item (1D 252) was selected, so process it.
5 Paste

The special Paste item (ID 253) was selected, so process it.
9 Clear

The special Clear item (1D 254) was selected, so process it.

When DeskShutDown is called, the NDA window should be closed to release the
memory it occupies or to terminate some activity tied to the application.

NDA_Action. The most difficult subroutine to program is the action subroutine.
It is responsible for handling any of nine tasks that may be passed to it for processing.
The action code for the task is passed in the accumulator and can be one of the
values shown in table 9-1.

For action codes 5 to 9 (the editing commands). a non-zero value is returned in
the accumulator if the action was handled (the usual case) or 0 if it was not.

The Run task should be processed by performing the periodic action associated
with the NDA. The clock accessory in listing 9-1, which has a Period of one second,
processes the Run code by displaving the current time. In other types of accessories,
vou may want to blink a cursor, update a svstem status display, or perform other
similar tasks.

316 All about Desk Accessories

The Cursor task is called once every TaskMaster loop, but only if the NDA
window is open. It allows the accessory to change the active cursor depending on
the current position of the mouse. For example, you might want to change the
cursor to a bulls-eye if the mouse happens to be inside the content region of the
desk accessory window. The example accessory shows how to determine if the mouse
is inside an NDA window, how to change the cursor to a wristwatch if it is, and
how to restore the original cursor if it is not.

The Event task handles the six standard s events mentioned above. The trickiest
handler is probably the one for update events. It must call BeginUpdate (to make
the visible region the same as the update region temporarily), redraw the contents
of the window, and then call EndUpdate (to restore the original visible region and
empty the update region). The clock NDA redraws the window simply by displaying
the current time.

The handler for activate events must first distinguish between an activate and a
deactivate operation. It can do this by examining bit 0 of the modifiers word of the
event record: if it is 0, the NDA window is being deactivated. In the example, a
deactivate event is handled by restoring the original cursor.

Notice the technique used in the example for accessing the modifiers field in the
event record. On entry to the NDA_Action subroutine, a pointer to the event record
(stored in X and Y) is pushed on the stack. Later, a direct page that is aligned with
the stack pointer is created so that the fields in the event record, a pointer to which
is now in direct page, can be accessed with the [dp],Y addressing mode.

Installing an NDA

NDAs are ProDOS 16 load files that have a file type code of $BS8. Only those NDA
files that are located in the SYSTEM/DESK.ACCS/ subdirectory on the boot disk
at boot time will be added to the Apple menu when vou call the FixAppleMenu
function.

REFERENCE SECTION
Table R9-1: The Major Functions in the Desk Manager Tool Set ($05)

Function Stack Description of
Function Name Number Parameters Parameter -
CloseNDA 516 RefNum (W) NDA reference number
CloseNDAbyWinPtr 351C TheWindow (L) Pointer to CDA
window
DeskStartup %02 [no parameters]
DeskShutDown %03 [no parameters]

Reference Section 317

Function Stack Description of

Function Name _Na_a_@{:_;:r Parameters Parameter
FixAppleMenu 51E MenulD (W) ID of menu to add DAs
to
InstallCDA S0F IDHandle (L) Handle to CDA header
OpenNDA 815 result (W) Reference number for
NDA
DAIDNumber (W) Menu item 1D number
for NDA
SystemClick 817 EventRecord (L) Ptr to event record
TheWindow (L) Ptr to NDA window
]'EL'ﬂrd
FindWindRes (W) Result of FindWindow
call
SystemEdit 518 result (W) Boolean: did NDA
handle edit?
EditType (W) Code for edit
command:
1 = undo, 2 = cut,
3 = copy, 4 = paste,
3 = clear
SvstemTask 519 [no parameters|
Table R9-2: Desk Manager Error Codes
Error
Code Description of Error Condition -
%0510 The specified desk accessory was not found.
30511 The window is not an NDA (system)

window.

318 All about Desk Accessories

Listing 9-1: A New Desk Accessory

FEAFRBRF BRI R R R R R R AR R R R PR R R R R R EEREARERER

This program shows how to construct a

New Desk Accessory (NDA). The NDA

defined here is a clock window which

time and date are updated once per

second.

. .
L 3
L] L]
contains the current time and date; the
L 3 -
. .
L 3 L 3
L] L]

I E R R R E R R R R R R R R R RS SRR R R R R R R R

LIST
SYMBOL
ABSADDR
INSTIME
GEM

KEEP
mcoPy

Period GEQU
EventMask GEGU

NDA_Cleock START

DC
DC
Dc
DC
DC
DC
DC
DC
DC

OFF
OFF
ON
ON
OoN

CLOCK
CLOCK.MAC

60
SFFFF

[4"NDA_Open!
I4'NDA_Close’
[4'NDA_Action!
I4'"NDA_Init!
[2'Period!
[2'EventMask '
Cr,'l

C'Clock!
C'\Hest Tq0Q"

;Code file

iMacro file

iAsk for "run" action every second

;Handle all events

;0pen the NDA

;Close the NDA

sPerform MDA action
iStartup/Shutdown the NDA
;Periodicity of "run" action
iPermitted events

;Name in menu item form
:Text for NDA name

31D field + terminator

Open the NDA if 1t has not been previously opened. This routine

the 3-byte return address. The Desk Manager reserves this result

i
; must return a pointer to the NDA window on the stack, just above
i
i

space just before calling NDA_DOpen with a J5L instruction.

NDA_Open ANOP

Result EQU
PHB
PHK
PLB

LDA
BNE

$05

ClockOpen
Ignore

;Result stack offset after JSL,

;data bank = code bank

iClock window already upen?
;if so, branch

Reference Section 319

PHBE

PHA iSpace for result

PHA

PushPtr WindowDef

_HewWindow iCreate and open NDA window

PLX ;iPop pointer (low)

PLA iPop poinier (high)

STX WindowPtr iSave pointer to window

STA WindowPtr+2

STA Result+2,5 ;S5ave result on stack (high)

TXA

STA Result,S i (low)

PushLong WindowPtr

_SetSysWindow sMark this as a DA window

LDA #SFFFF

STA ClockOpen ;S5et "open" flag

PHA ispace for result

PHA

_GetCursorAdr

PopLong OldCursor iSave pointer to regular cursor
Ignore PLB

RTL

i Close the NDA if it is not already closed:

NDA_Close ANOP

FHB

PHK

FLB ;jdata bank = code bank

LDA ClockOpen 31s the clock window open?
BEQ lgnnre +Mo, so branch

Pusthng WindowPtr

_CloseWindow :Get rid of the window

STZ ClockOpen sMark clock as closed
FushLong OldCursor

_SetCursor iRestore application cursor
PLE

RTL

320 All about Desk Accessories

; Perform the NDA action:

NDA_Action ANOP

PHB s Save data bank
PHK
PLB sMake data bank = program bank
PHY jSave incoming parameters
PHX ;({event record or menu info)
ASL a jx2 to step into table
TAX
JSR {ActionThbl, X)
PLX sFix up the stack
PLY
PLB
RTL
ActionTbl ANOP
Dc 12'Nofction’
Dc 12'"NDA_Ewvent!
DC 12'NDA_Run'!
Dc 12'NDA_Cursor'
Dc 12'"NDA_Rswvrd!
pc 12'"NDA_Undo!
oc I12'NDA_Cut!'
oc I12'NDA_Copy'
DC [2'NDA_Paste!
Dc I2'NDA_Clear!

MoAction ANOP
RTS

NDA_Rsrvd ANOP
RTS

NDA_Undo ANDP
NDA_Cut ANOP
NDA_Copy ANOP
NDA_Paste ANOP
NDA_Clear ANOP

On exit A=0 i1f edit command wasn't handled; noen-zero if 11 was.
You will usually want 1o say it was handled, because the application
will not be active and so shouldn't be dealing with edit commands.

- e

LDA #$FFFF ;5ay we handled it.
RTS

Reference Section 321

i Display a wristwatch cursor 1f the cursor is over top of
i the content region of the window. This routine 1is nnly called
4 when the DA window i1s the front window.

NDA_Cursor ANOP
PHA
PHA

_GetPort ;Save current GrafPort

PushLong WindowPtr
_SetPort iMake clock window active GrafPort

PushPtr PortRect

_GetPortRect iGet the port rectangle {local coords)
FushPtr MousePosn iReturn position in GrafPort coords
_GetMouse ;Get cursor position

PHA ;jspace for result

PushPtr MousePosn ipointer to mouse coordinate

PushPtr PortRect sjpointer to content region rectangle
_PtinRect

FLA ;1s point in content region?

BEQ NDA_Curs1 1Mo, so branch

t+ Switch to watch cursaor, but only if it's nol already active:

PHA

PHA

_GetCursorAdr iGel current cursor pointer
PLA

PLX

cmp #latchCurs 31s it the watch?

BNE NDA_Curs0 ;Definitely not

CPX #"WatchCurs ils it the watch?

BEG NDA_Curs3 iYes, so do nothing

HNDA_Curs0 PushPtr WatchCurs
BRA NDA_Curs2

i Switch to application cursor, but only if it's not already active:

NDA_Cursl PHA
PHA
_GetCursorAdr iGet current cursor pointer
PLA
PLX

322 Al about Desk Accessories

NDA_Curs2

NDA_Curs3

; This subroutine is called once eve

NDA_Run

; X and Y (pushed on stack) contain

NDA_Event

TheEvent

TE1

CmMP
BMNE
CPX
BNE

PushlLong
_SetCurs

_SetPort
RTS

ANDOP

PHA
PHA
_GetPort

#WatchCurs
NDA_Curs3
#"latchCurs
NDA_Curs3

DldCursor

or

PushLong WindowPtr

_SetPort

JSR ShowTime

_SetPort

RTS

ANOP
EQu

PHD
TSC
TCD

LDA
Cmp
BCS

ASL
TAX
JSR

PLD
RTS

$05

[TheEvent]
9
TE1

A

(EventTbl,X)

sls 1t the watch?
iNo, so don't do anything
;Is it the watch?
jNo, so don't do anything

;Switch to application cursor

iRestore GrafPort

ry "Perjod" ticks:

;Space for result

;5ave current port

;Switch to clock window for drawing
iDisplay the new time

;(Pointer still on stack)

pointer to event record

i1 (base) + 2 (JSR} + 2 (PHD)

;Align d.p. with stack
:Get "what" code
iAnything we support?
+No, so branch

;x2 to step into table

;iRestore direct page

Reference Section 323

EventThbl ANOP
Dc [2'"HoEvent! ;Not supported
DC [12'DoMouseDwn!’ : Mouse-down
DC I12'DoMouselp! ; Mouse-up
DC [2'DoKeyDwn' ; Key down
Dc [2"NoEwvent! sNot supported
Dc I12'DoAutoKey! i Autokey
DC [2'DolUpdate! ; Update
DC [2'NoEvent! iMol supported
Dc l2'DoActivate! ; Activate
DoMouselUp ANOP
DoMouseDwn ANOP
DoKeyDwn ANOP
DoAutokKey ANOP
NoEvent RTS
DolUpdate ANOP

PushLong MWindowPtr
_BeginUpdate
J5R ShowTime

PushLoﬂg WindowPtr
_EndUpdate

RTS
; If NDA window is deactivated,

DoActivate ANOP

LDY 14
LDA [TheEvent],Y
AND #3501
BEG NDA_Off
RTS
NDA_Dff FPushLong OldCursor
_SetCursor
RTS
ShowTime ANOP

PushPir TheTime
_ReadAsciiTime

SEP
LONGA

#3520
aFF

324 All about Desk Accessories

;Visible region = update region

;Display the current time

;Restore entire visible region

return to original cursor.

sAccess modifiers field

jIsolate activate/deactivate flag
;I1f 0, deactivate

;Switch to previous cursor

;Read the clock

iB-bit A register for byte accesses

LDY 19

ST1 LDA TheTime, Y
AND #$7F ;Convert to standard ASCII
STA TheTime,Y
DEY
BPL ST1
REP #3520 ;Back to 16-bit A register
LONGA ON
PushWord #20 sherizontal
PushWord #9 svertical
_MoveTao

PushPtr TheTime
_DrawCStrlng ijDraw the time string

RTS
¥ Startup or shutdown the NDA. On entry, A=0 for DeskShutDown,
; A is non-zero for DeskStartup.

NDA_Init ANOP

PHB

PHK

PLB

CMP #0 ;S5tarting up?

BHE NDA_Init1 ;Yes, so do nothing

LDA ClockOpen 3Clock window open?

BEGQ NDA_Init1 iNo, so branch

PushLong WindowPtr

_CloseWindow ;Close the window (releases memory)
STZ ClockDpen ;Set "closed" flag

NDA_Init1 PLB
RTL

i The data area begins here:
NDA_Title STR 'Calendar/Clock! sWindow title

WindowDef ANOP

DC I2'"EndWind-WindowDef!
Dc [2'%1100000010100000' ;Window with close box, title
Dc I4'MDA_Title! sPointer to window name

Reference Section 325

DC Igq1Qe
DeC 12'0,0,0,0!

DC 14100

DC 1410! ;0rigin at (0,0)

Dc 1410

DC 14'0!

DC 14'0!

Dc 14'0!

Dc 140!

DC 1201

DC I4'0!

oc 1410

Dc [4v0° i(Handle our own updates)
DC 1'60,E5,71,245! ;Dimensions of window

Dc [gr=11 ;Put clock window in front
DC I4v0¢

EndWind ANOP

WindowPtr DS 4 +Pointer to window record
ClockOpen DS 2 iUsed as a flag
PortRect DS 8 iContent region rectangle
MousePosn DS 4 jCurrent mouse position (local)
TheTime Ds 20 jReadAsciiTime returns 20 bytes

DC c ' ;Add padding

Dc 10 i{terminator for DrawCString)
0ldCursor DS 4 jPointer to application's cursor recen

i This is the cursor record for a "wristwatch" cursor:

WatchCurs DC I2'12! iRows in cursor image
Dc [2'3! ;Cursor width (i1n words)
DC H'000000000000" ;The cursor image
DC H'00O0FFOOOODOD?

DeC H'OO0OFFOOOOODOD!

DC H'OOFOOFOOOQODOQO!

DC H'OFOOFOFOOQDOD®

DC H'OFOOFOFOOOOOD!

DC H'OFOFFOFFOODOD"

D H'OFDOOOFOODOD?Y

DC H'OOFOOFOOQO0OQD!

DC H'00OFFOOO0QOO0D" .
DC H'000FFOOOQO0QODD '
DC Hrooo0000000C0D"

bC H'000FFO000000' :The cursor mask
DC H'0OFFFFOOO00O!

Dc H'DOFFFFOOO0O0O!

326 All about Desk Accessories L

DC
DC

DC
bc
DC
DC
DC
DC

DC

END

HIOFFFFFFO0000"
H'FFFFFFFF0000"
H'FFFFFFFFO000"
H'FFFFFFFFFO00"
H'FFFFFFFF0000"
H'OFFFFFF00000"
H'OOFFFFO00000"
H'0O0FFFFO00000"
H'000FF0000000"

I2'e,B8!

iHot spot (y,x)

Reference Section

327

CHAPTER 10

The ProDOS 16
Operating
System

The software interface between an application program and a mass-storage device
such as a disk drive is called a disk operating system. Its main responsibilities are
to organize data and program files on the disk medium and to provide a simple
mechanism applications can use to transfer data to and from these files. Other
common chores a disk operating system performs are file creation, deletion, and
renaming, and volume management.

For the past few vears, the standard operating system for the Apple II family has
been ProDOS, the Professional Disk Operating System. The original release of
ProDOS, since renamed ProDOS 8, was designed specifically for the Ile, Ile, and
11 Plus, and works in the 65C02's (or 6302's) 64K memory space only.

ProDOS 8 also works with a s that is running Ile-stvle applications, of course,
but it will not work with Gs-specific applications, because they are not confined to
the first 64K of memory. To solve this problem, Apple Computer, Ine. created
ProDOS 16, an operating system that is similar in structure to ProDOS 8 but that
takes advantage of the entire Gs memory space.

ProDOS 16 runs in 65816 native mode, which means it works on the Apple I1Gs
only. If vou try to boot it on another type of Apple II you will see an appropriate
error message. Programs that work with ProDOS 8 will not work with ProDOS 16,
because ProDOS 16 uses a new command calling sequence. Fortunately, program-
mers should find it relatively easy to adapt programs to ProDOS 16, because most
ProDOS 8§ commands have ProDOS 16 equivalents with the same symbolic names
and similar tyvpes of command parameters.

Both versions of ProDOS format disks and store files in exactly the same way.
Thus, data files can be accessed directly by either operating system. ProDOS 16 is
even capable of switching to ProDOS 8 if the proper system files are included on
the start-up disk.

329

This chapter looks at the main features of ProDOS 16 and gives several examples
of how to use ProDOS 16 commands from within a program. It also reviews some
of the jargon associated with ProDOS in general and ProDOS 16 in particular.
ProDOS 8 has been covered in great detail in Apple ProDOS: Advanced Features
for Programmers (Little, 1985). That subject matter will not be repeated here.

BLOCK-STRUCTURED DEVICES

ProDOS 16 works with block-structured storage devices only. A block is a group of
512 bytes of data and represents the smallest unit of information the device controller
can read or write. Contrast this with character devices, such as printers or modems
which deal with only one character at a time.

The most common block-structured devices used with ProDOS 16 on the Gs are
the following disk drives:

o 3 Va-inch disk drives (Apple 3.5 Drive, UniDisk 3.5)
e 5 Vi-inch disk drives (Apple 5.25 Drive, UniDisk 5.25, DuoDisk, Disk 11}
« Hard disks (Hard Disk 208C, ProFile)

Appendix 7 describes how to connect 3 Va-inch and 5 i-inch drives to the cs.

In addition, it is possible to partition and configure an area of memory so that
ProDOS 16 thinks it is a block-structured device called a RAM disk. The advantage
of using a RAM disk instead of a mechanical disk drive is that input/output operations
are much quicker. You must remember to save files on the RAM disk to a real disk
before you turn off the s, however.

The easiest way to create a RAM disk is to use the Control Panel desk accessory.
With it you can allocate all or a portion of the memory on a Gs memory expansion
card for RAM disk use. If you format this RAM disk and put the necessary operating
system files on it, you can even boot from it when you press Control-OpenApple-
Reset. To select it as the boot device, use the Control Panel Slots command to
change the Boot option.

DIRECTORIES AND FILES

A volume is the general name for the storage medium used by a block-structured
device. Each volume formatted by ProDOS 16 contains one or more directories in
which files may be stored. The main directory, called the volume directory or the
root directory, is created when you format the disk; it may contain up to 51 entries,
representing ordinary data files or subdirectory files. A subdirectory may contain as
many entries as space permits, including other subdirectories. See figure 10-1 for
a diagram showing how multiple directories on a volume are interrelated.

The ability to create a hierarchy of directories makes it easy to manage large
numbers of files on a single disk. This is because groups of related files can be

330 The ProDOS 16 Operating System

Figure 10-1. The ProDOS Hierarchical Directory Structure

Yolume Directory

/WORK/
PRODOS SYS /WORK/LETTERS/
BASIC.SYSTEM SYS LETTERS/
SLARTLP . TO.EDITOR TXT
LETTERS DIR e e
PROGRAMS DIR '

/WORK/LETTERS /GS BOOK/

/¥WORK/PROGRAMS /
PROGRAMS/

GS.BOOK/

CHAPTER.1 TXT

ANIFMALS = BAS CHAPTER.2 TXT
PTP.CODE SYS

PTP.16 S16

isolated in their own separate directories where they will not be mixed with the
many other files on the disk.

Every file on a disk is associated with a filename up to fifteen characters long.
The first character must be a letter of the alphabet from A to Z, but subsequent
characters can be letters, digits (0 to 9), or periods.

Because of the way directories can be nested when using ProDOS 16, it is not
enough to identify a file by its name only. You must also identify the directory in
which the file is stored. The identifying string required by ProDOS 16 is called a
pathname. It is a concatenation of the names of each of the directories ProDOS 16
must pass through to reach the file’s subdirectory, followed by the name of the file
itself. The pathname begins with a slash (/) and each directory name in the pathname
is separated from the next with a slash.

Suppose the name of the volume directory of your disk is WORK and within this
directory you have defined a subdirectory called LETTERS that contains a file called
TO.EDITOR. The pathname to use to identify this file is:

/WORK/LETTERS/TO.EDITOR

Directories and Files 331

You can avoid specifying a complete pathname every time vou want to deal with a
file by setting a default prefix. A default prefix identifies the path to a particular
directory, and ProDOS 16 automatically puts that path in front of any filename you
specify. Tt will also put it in front of a partial pathname. A partial pathname is a
name describing a series of directories that does not begin with a slash. Essentially,
a partial pathname is the pathname of a file relative to the directory described by
the default prefix.

For example, if you set the default prefix to /WORK/LETTERS in the above
example, you could identify TO.EDITOR by its filename only. If the default prefix
was /WORK/, you would specify the partial pathname LETTERS/TO.EDITOR.

The default prefix can also be represented by the name 0/. Thus, 0/TO.EDITOR
is equivalent to /WORK/LETTERS/TO.EDITOR if the 0/ prefix has been set to
/WORK/LETTERS. When an application first starts up, the default prefix identifies
the name of the boot volume.

As indicated in table 10-1, ProDOS 16 has a similar shorthand notation for the
prefixes describing eight other directories. Only 0/ and 3/ to 7/ should be changed
by an application, although it is possible to change 1/ and 2/ if you really need to.
Change prefixes with the SET_PREFIX command.

THE STRUCTURE OF A PRODOS 16 BOOT DISK

Certain files must be present on a ProDOS 16 system disk before you can boot it
or use it to run both ProDOS 8 and ProDOS 16 applications. The structure of the
simplest such system disk is as follows:

PRODOS Operating system loader
SYSTEM/ Subdirectory: operating system files
P8 The ProDOS 8 operating system
P16 The ProDOS 16 operating system

START The start-up program
TOOLS/ Subdirectory: RAM-based tool sets
FONTS/ Subdirectory: font files
DESK.ACCS/ Subdirectory: desk accessories
LIBS/ Subdirectory: system library files
DRIVERS/ Subdirectory: device drivers
SYSTEM.SETUP/ Subdirectory: initialization programs
TOOL.SETUP Patches to ROM-based tool sets

A ProDOS 16 system disk goes through a rather convoluted start-up procedure
when you boot it. It begins by loading the ProDOS program into memory and
executing it. Once ProDOS gets control it loads the ProDOS 16 operating system
from the SYSTEM/PI16 file and then executes the TOOL.SETUP program in the
SYSTEM/SYSTEM.SETUP/ directory. TOOL.SETUP patches and enhances ROM-
hased tool sets.

332 The ProDOS 16 Operating System

Table 10-1: Standard Prefix Numbers

Prefix
Number Description i
b The boot prefix

This is the volume name from which ProDOS 16 was
booted. This prefix cannot be changed.

0/ The default prefix
ProDOS automatically attaches it to any filename or partial
pathname (as opposed to full pathname) vou specify.

il The application prefix
The pathname of the directory containing the current
application program.

2/ The system library prefix
The pathname of the directory containing library modules
used by the current application. For a standard ProDQS 16
boot disk, this is /MYDISK/SYSTEM/LIBS/.

3/ User-definable
4f User-definable
5/ User-definable
6/ User-definable
T User-definable

ProDOS then continues by loading and executing every other file in the SYSTEM/
SYSTEM.SETUP/ directory. Typical files include permanent initialization (start-up)
files with file type codes of $B6 and temporary initialization files with file type codes
of 8B7. The difference between these two types of files is that temporary initialization
files remove themselves from memory when they finish executing; permanent ini-
tialization files do not.

ProDOS then meves to the SYSTEM/DESK.ACCS/ directory and loads into
memory any Classic Desk Accessory files (file type $B9) and New Desk Accessory
files (file type $B8). This causes the names of the Classic Desk Accessories to be
placed in the menu that appears when vou press Control-OpenApple-Esc.

Next, ProDOS searches the SYSTEM/ directory for a file called START that has
a file type of $B3 (S16). If it finds this file, it loads and executes it and the boot
process ends. The START program is typically a program selector that lets you
choose a particular application to run.

The Structure of a ProDOS 16 Boot Disk 333

If PRODOS does not find START, it scans the volume directory until it finds a
ProDOS 8 system program (file type $FF) whose name ends with “.SYSTEM" or a
ProDOS 16 system program (file type $B3) whose name ends with *.8YS16." It then
ends the boot procedure by running the program. It will not run a ProDOS 8
program unless SYSTEM/PS is on the disk, however. If no such system program is
found, PRODOS brings up a window asking the user to enter the pathname of the
application to run.

USING PRODOS 16 COMMANDS

The general procedure for calling a ProDOS 16 command is different from the one
used to call a tool set function. It goes something like this:

JSL SE100AB ;Call ProDOS 16 entry point

DC [12'CommandNum!’ ;Command number [word]

DC l4'ParmTable! ;Address of parameter table [longl
BCS Errar ;(Control resumes here after call)

You can call a ProDOS 16 command while the 65816 is in native mode.

Immediately following the JSL instruction is a word containing the identification
number of the ProDOS 16 command vou wish to use. Table 10-2 contains a list of
all 32 ProDOS 16 commands and command numbers.

Following the command number is a pointer to a parameter table containing
parameters required by the command and results returned by the command. The
parameters can be one- or two-word numeric values or two-word pointers. The
exact structure of the parameter table varies from command to command.

When a ProDOS 16 command finishes, it adds 6 to the return address pushed
on the stack by the JSL instruction, then ends with an RTL instruction. This causes
control to pass to the code beginning just after the pointer to the parameter table.
On return, all registers remain unchanged except the accumulator (which contains
an error code), the program counter, and the status register (the m, x, I, and e flags
are unchanged; N, V, and Z are undefined; the D flag is cleared; the carry Hag
reflects the error status).

At this stage. you can check the state of the carry flag to determine whether an
error occurred: if the carry flag is clear, there was no error; if it is not clear, an error
did occur. An error code indicating the nature of the error comes back in the
accumulator; the accumulator will contain 0 if no error oceurred. See table R10-2
in the reference section at the end of this chapter for a list of ProDOS 16 error
codes.

APW comes with a set of macros which will help to simplify the use of a ProDOS
16 command. They are stored in a file called M16.PRODOS. To call a ProDOS
command with a macro, use instructions of the form:

_CMDNAME ParmThbl

334 The ProDOS 16 Operating System

Table 10-2:

The ProDOS 16 Commands

Command Number

Command Name

$01
302

$04
$05
$06

509
30A
S0B
510
511

$12
$13
$14

$16
$17

$18
$19

CREATE
DESTROY
CHANGE_PATH

SET_FILE_INFO
GET_FILE_INFO
VOLUME

SET_PREFIX

CET_PREFIX

CLEAR_BACKUP_BIT

OPEN

NEWLINE

READ
WRITE
CLOSE

FLUSH

SET_MARK

GET_MARK

SET_EOF
GET_EOF

Description of Command

Creates a new file
Deletes a file

Renames a file or moves it to
another directory

Changes the attributes of a file
Returns the attributes of a file

Returns the name and attributes of
the volume in a device

Assigns a pathname prefix to one of
the eight standard prefix numbers

Returns the pathname prefix for one
of the eight standard prefix numbers

Clears the "backup-needed” bit in a
file’s access code byte

Prepares a file for subsequent read,
write, and positioning commands

Sets the end-of-line character for
read operations

Reads data from an open file
Writes data to an open file

Prevents access to a file until it is
reopened

Writes the contents of the file’s VO
buffer to disk

Sets the active position in an open

file

Returns the active position in an
open file

Sets the size of the file

Returns the size of the file

Using ProDOS 16 Commands 335

Table 10-2: Continued

Command Number Command Name Description of Command

S1A SET_LEVEL Sets the system file level

$1B GET_LEVEL Returns the system file level

%20 GET_DEV_NUM Returns the number of a named
device

$21 GET_LAST_DEV Returns the number of the last
device accessed

$22 READ_BLOCK Reads a block of data from a device

$23 WRITE_BLOCK Writes a block of data to a device

$24 FORMAT Formats the medium in a device

$27 GET_NAME Returns the filename of the current
application

%28 GET_BOOT_VOL Returns the name of the ProDOS
boot volume

$29 QUIT Exits the current application

$2A GET_VERSION Returns the ProDOS version number

$31 ALLOC_INTERRUPT Installs an interrupt handler

$32 DEALLOC_INTERRUPT Removes an interrupt handler

where CMDNAME represents the name of the command and ParmTbl represents
the address of the parameter table associated with the command. At assembly time,
this macro is expanded into the standard ProDOS 16 calling sequence.

The main advantage of using the macros is vou do not have to memorize command
numbers, only command names. It also makes assembly language programs that use
ProDOS 16 a lot easier to read.

In the sections which follow, parameter tables for ProDOS 16 commands are
presented. These tables describe the order of the parameters, the size of the
parameters, and whether the parameter is an Input (I) or a Result (R). An Input is
a parameter that must be provided before using the command. A Result (R) is a
parameter returned by the command.

Note that even though a pointer to a string may be marked as a result, ProDOS
16 does not actually return the pointer. Instead, it returns the bytes in the string
in the space pointed to by the pointer. It is the responsibility of the application to
allocate a space of the proper size and to provide a pointer to it.

336 The ProDOS 16 Operating System

FILE-MANAGEMENT COMMANDS

The ProDOS file-management commands perform a variety of important operations

on closed files:

* Creating, destroying, and renaming files

* Reading and changing file attribu

* Reading and changing pathname prefixes

tes

The first two groups of commands affect only the directory entry for a file, not the

data inside the file.

Creating New Files

The file management command you will probably use most often is CREATE. With

it you can create a directory entry for a data file; you can subsequently open this

file and write data to it. You can also use CREATE to create subdirectory files.
The parameter list for CREATE is quite lengthy, because it must contain all the

attributes for the file. Here is how it is structured:

CREATE ($01)

Symbolic
Offset Name B
+0 to +3 pathname
+4 to +5 access
+6 to +7 file_type
+85 to +11 aux_type
+12 to +13 storage_type
+14 to +15 create_date
+16 to +17 create_time

Input
or
Result

Deseription

I
I
I

Pointer to the pathname string
Access code

File type code

Auxiliary type code

Storage type code

Creation date

Creation time

Every item in the CREATE parameter list is an input parameter, so each must be
set up properly before calling CREATE. Multibyte items are stored with the low-

order bytes first, as usual.

File-management Commands 337

There are many unfamiliar items in this parameter list that require further
explanation; the same items appear in the parameter tables of many other ProDOS
16 commands. Each item is examined in detail below,

Pathname. This item is the address of a pathname string identifying the file to be
created. The string begins with a length byte and is followed by ASCll-encoded
characters.

Access. The access item indicates whether the file may be read from, written to,
renamed, or destroyed; it also indicates whether the file has been modified since
the last back-up operation. Only the low-order byte of access is defined (the high-
order byte is 0); the meaning of each bit is as follows:

7 6 S5 4 3 2 1 o0
D [RN| B |[reserved]l | W | R

The abbreviations in this chart have the following.meanings:

delete-enabled

=D

*» RN = rename-enabled

* B = back-up required
* W = write-enahled
* R = read-enabled

The access attribute for a particular bit is enabled if the corresponding bit is 1; if
the bit is 0, the attribute is disabled.

When creating standard files, with full access permitted, set access to $E3. If
some of the access attributes are disabled, the file is said to be locked,

ProDOS 16 automatically sets the back-up bit to 1 whenever vou write to the
file to inform a back-up utility program that the file has changed since the last back-
up. It is the responsibility of the back-up to clear this bit to 0 with the CLEAR_
BACKUP_BIT command after making the back-up.

File_type. The low-order byte of the file tvpe code indicates the general nature
of the data the file contains. (The high-order byte is always 0.) A list of the commonly-
used codes is provided in table 10-3.

338 The ProDOS 16 Operating System

Table 10-3: ProDOS 16 File Type Codes

File Type Standard

Code Mnemonic Description of File

$00 Uncategorized file

801 BAD Bad block file

£02 PCD Pascal code (SOS)

$03 PTX Pascal text (SOS)

304 TXT ASCII texthle

$05 PDA Pascal data (SOS)

306 BIN General binary file

$07 FNT Font file (SOS)

308 FOT Graphics screen file

809 BA3 Business BASIC program (SOS)
$0A DA3 Business BASIC data (SOS)

S0B WPF Word processor file (SOS)

30C 508 508 system file

30D-$0E [Reserved for SOS]

SOF DIR Subdirectory file

$10 RPD Record Processing System data (SOS)
$11 RPI Record Processing System index (SOS)
812 AppleFile discard file (SOS)

313 AppleFile model file (SOS)

$14 AppleFile report format file (SOS)
§15 Screen library file (SOS)

$16-%18 [Reserved for SOS|

$19 ADB AppleWorks database file

$1A AWP AppleWorks word processing file
$1B ASP AppleWorks spreadsheet file
S1C-$AF [Reserved]

5B0 SRC APW source code

File-management Commands

339

Table 10-3: Continued

File Type
Code

$B1

$B2

$B3

$B4

$B5

$B6

$BT

$BS8

$B9

$BA

$BB
$BC-$BE
$BF

$Co

$C1
$C2-3C7
$C8
$CH9-SEE
SEF

$F0
$F1-$F8
$F9

$FA

$FB

$FC

$FD

$FE

3FF

Standard
Mnemonic
OB]

LB

516

RTL
EXE

STR

TSF
NDA
CDA
TOL
DRV

DoOC
PNT
PIC

FON

PAS
CMD

P16
INT
IVR
BAS
VAR
REL
SYS

Description of File

APW object code

APW library

ProDOS 16 system program

APW run-time library

APW executable shell application
ProDOS 16 permanent init (start-up) file
ProDOS 16 temporary init file

New Desk Accessory

Classic Desk Accessory

Tool set

ProDOS 16 device driver
[Reserved for ProDOS 16 load files]
ProDOS 16 document file
Compressed super high-res picture file
Super high-res picture file
[Reserved]

ProDOS 16 font file

[Reserved)]

Pascal area on a partitioned disk
ProDOS 8 added command file
ProDOS 8 user-defined files
ProDOS 16 file

Integer BASIC program

Integer BASIC variables

Applesoft BASIC program
Applesoft BASIC variables

EDASM relocatable code file
ProDOS 8 system program

~NOTE: 508 stands for the Apple 111 Sophisticated Operating Svstem.

340 The ProDOS 16 Operating System

Aux_type. The meaning of the auxiliary type code for a file depends on the file
type code. A textfile, for example, uses the auxiliary type code to indicate the
random-access record length (or 0 for a sequential textfile not divided into separate
records). APW uses the aux_type code in SRC ($B0) files to hold a language 1D
number. Note that only the low-order word of aux_type is presently used by ProDOS
16.

Storage_type. The low-order byte of the storage type code indicates the structure
of the file on the disk. The possible values are:

500 Inactive entry

801 Seedling file (EOF <= 512 bytes)

$02 Sapling file (512 < EOF <= 128K bytes)
503 Tree file (128K < EOF < 16M bytes)
$04 Pascal region on a partitioned disk

0D Subdirectory file

S0E A subdirectory header

$0F A volume directory header

The differences among a seedling, a sapling, and a tree file are really not important
to the designer of an application program. Suffice to say that all standard data files
should have a storage type of $01 (seedling); as the file grows in size, ProDOS 16
automatically changes its structure into that of a sapling file and then into a tree
file. For a description of these three basic file structures, refer to Apple ProDOS:
Advanced Features for Programmers (Little, 1985). If you are creating a subdirectory
file, set storage_type to $0D.

Create_date. The creation date is a two-byte value containing the year, month,
and day on which the file was created. The encoded formats of these three quantities
are as follows:

1514131211109 8 7 6 5 4 3 2 1 0
year month day

If you specify a creation date of 0, ProDOS 16 automatically uses the current date.

Create_time. The creation time is a two-byte value containing the hour and minute
on which the file was created. These two quantities are encoded as follows:

File-management Commands 341

1514131211109 8 7 6 5 4 3 2 1.0
olo|o hour oflo minute

If you specify a creation time of 0, ProDOS 16 automatically uses the current time.

Deleting Files

To remove a file from its directory permanently, vou must delete the file with the
DESTROY command. Destroying a file also frees up the disk blocks used by the
file, making them available for allocation to other files.

The only item in the DESTROY parameter list is a pathname pointer:

DESTROY (502)

Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname I Pointer to the pathname string

Note that you cannot destroy a file if the delete-enabled bit in its access code is 0.
You can use SET_FILE_INFO (see below) to set this bit prior to destroving a file.

Renaming Files

The most common use for the CHANGE _PATH command is to rename a file, but
it is also useful for moving a file from one subdirectory to another on the same disk.
Its parameter table looks like this:

CHANGE_PATH (504)

Input
Symbolic or
Offset Name Result Description o
+0 to +3 pathname 1 Pointer to the pathname string
+4 to +7 new_pathname I Pointer to the new pathname string

342 The ProDOS 16 Operating System

When the two pathnames specified are identical except for the filename portion,
CHANGE_PATH simply renames the file. If the pathnames describe files in differ-
ent directories, the entry for the file in the first directory specified is moved to the
second.

Note that you cannot rename a file if the rename-enabled bit in its access code
is 0. You can use SET_FILE_INFO (see below) to set this bit prior to renaming a
file.

Changing File Attributes

As was discussed in the examination of the CREATE command, each file is associated
with a set of attributes that describes such things as the date and time on which the
file was created, the file type, the auxiliary type code, and so on. You can determine
what these parameters are for any existing file using the GET_FILE_INFO com-
mand. Here is what its parameter table looks like:

GET_FILE_INFO (806)

Input

Symbolic or
Offset Name Result Description
+0 to +3 pathname I Pointer to the pathname string
+4 to +5 access R Access code
+6 to +7 file_type R File tvpe code
+8 to +11 aux_type R Auxiliary type code'
+12 to +13 storage _type R Storage tvpe code
+14 to +15 create_date R Creation date
+16 to +17 create_time R Creation time
+18 to +19 mod_date R Modification date
+20 to +21 mod_time Modification time

+22 to +25

blocks_used

Blocks used by the file

! For a volume directory file, this field becomes total_blocks (the number of blocks on the volume).

The only input parameter is the pathname describing the file you want to examine.
All other parameters are returned by GET_FILE_INFO.

File-management Commands 343

The last three types of parameters in the chart above have not been discussed
vet:

Mod_date. The date on which the file was last modified. The format of this
word is the same as that for create_date.

Mod_time. The time at which the file was last modified. The format of this word
is the same as that for create_time.

Blocks_used. The total number of blocks used by the file. It includes any non-
data blocks used as overhead by the operating system.

The results returned by GET_FILE_INFO are slightly different if the pathname
points to the name of the volume directory of the disk. In this case, the aux_type
field contains the size of the disk in blocks (called total blocks) and the blocks_used
field contains the total number of blocks used by all files on the disk.

You can use a related command, SET_FILE_INFO, to change the attributes of
any file; its parameter table looks just like the one used for GET_FILE_INFO,
except that it does not include the blocks_used field at the end. An easy way to
change one particular file attribute without affecting the rest is to call GET_FILE_
INFO, store the new parameter in the GET_FILE_INFO parameter table, and
then call SET_FILE_INFO using the same parameter table. Note, however, that
you cannot change the storage_type attribute with SET_FILE_INFO.

Note that SET_FILE_INFO cannot be used to clear the back-up-needed bit of
the access code word. This bit is primarily for the benefit of disk-back-up utilities.
By examining the bit, such utilities can determine if a file has changed since the
last back-up. After the back-up operation, the back-up utility should clear the back-
up bit to 0. To do this, it must use the CLEAR_BACKUP_BIT command. Here is
the structure of the parameter table for CLEAR_BACKUP_BIT:

CLEAR_BACKUP_BIT ($0B)

Input
Symbolic or
Offset ~ Name Result __ Description
+0 to +3 pathname I Pointer to the pathname string

Notice that all you have to specify is a pointer to the pathname string.

344 The ProDOS 16 Operating System

Determining Volume Characteristics

The VOLUME can be used to determine some of the characteristies of a disk
volume:

VOLUME (808}

Input

Symbolic or
Offset Name Result Description
+0 to +3 dev_name I Pointer to the device name string
+4to +7 vol_name R Pointer to the volume name string
+8 to +11 total_blocks R Size of the volume in blocks
+12 to +15 free_blocks R Number of unused blocks
+16 to +17 file_sys_id R Operating system ID code

The VOLUME command takes one input parameter—a pointer to the name of the
device (dev_name)}—and returns information respecting the volume in that device.

Dev_name points to a string of the form .Dn that is preceded by a length byte.
The value for n can be from 1 up to the number of ProDOS block devices in the
system. The only way to determine the maximum value for n is to call VOLUME
with consecutive device names until error $11 (invalid device) occurs.

Vol_name is a 17-byte buffer area in which VOLUME returns a length byte
followed by the name of the volume. The name of the volume includes a leading
slash (/).

The other values returned are as follows:

total_blocks. The total number of blocks on the volume,

free_blocks. The total number of unused blocks on the volume.

file_sys_id. The low-order byte of this word indicates the type of operating
system to which the device belongs. The possible results are as follows:

* 1 = ProDOS or 508

« 2 =D0OS 3.3

e 3=D0S31or32

* 4 = Apple II Pascal

* 5 = Macintosh (Hat file structure)

File-management Commands 345

* 6 = Macintosh (HFS: hierarchical file structure)
* 7 = Macintosh XL
* § = Apple CP/M

All other values are reserved. Version 1.1 of ProDOS 16 recognizes only ProDOS
and SOS disks, however (file_sys_id = 1). If it detects another type of disk, it
returns an error code of $52 (unsupported volume type).

The other common error codes that VOLUME might return are as follows:

$27 I/O error; this error is reported if there is no disk in a 5%-inch drive.

528 No device connected; this error occurs if you do not have a second 5%-
inch drive connected to the drive controller.

$2F Device not on line; this occurs if there is no disk in a 3%-inch drive.

Manipulating Prefixes

Earlier in this chapter you saw how useful prefixes can be. ProDOS 16 lets you
define eight different prefixes, which can be referred to by the prefix designators
0, 1/, 2/, 3/, 4, 5/, 6/, and 7/. As explained earlier, the first three prefixes are
reserved for the system subdirectory (0/), the application subdirectory (1/), and the
library subdirectory (2/),

The prefixes from 3/ to 7/ are not used in any special way by the operating system,
so applications can use them to identify any directories they wish. For example, 4/
could be a directory containing help files and 5/ could be a directory containing data
files for an application.

Use the SET_PREFIX command to assign prefix strings to the eight standard
prefixes. The parameter table looks like this:

SET_PREFIX (309)

Input
Symbolic or
Offset Name Result Description -
+0 to +1 prefix_num 1 Prefix number (0 to 7)
+2to +5 prefix 1 Pointer to the new prefix string

Both these parameters are input parameters. The string pointed to by prefix begins
with a length byte, which is followed by the ASCIl-encoded characters in the
directory pathname. If the prefix string is not preceded by a slash, the string is
appended to the current prefix to create the new prefix string.

346 The ProDOS 16 Operating System

The GET_PREFIX parameter table looks like this:

GET_PREFIX (50A)

Input
Symbolic or
Offset Name Result Description
+0to +1 prefix_num I Prefix number (0 to 7)
+2 to +5 prefix R Pointer to prefix name string

Use GET_PREFIX to determine the current settings of the standard prefixes. It
returns the result in a buffer pointed to by the prefix parameter. The result is a
length byte followed by the prefix name. The name is preceded and followed by
slashes (/7). You must allocate a buffer of 67 bytes to accommodate the largest prefix
name that might be returned.

FILE I/O COMMANDS

The file 1/O commands affect the data portion of a file. The two main commands an
application uses are for reading and writing. Reading, of course, is the transfer of
data from disk to memory; writing involves a transfer in the opposite direction,

Positions in the File

Before the file /O commands are examined, two important conc¢epts—mark and
EQF—should be mentioned.

The position within a file at which a subsequent read or write operation will take
place is called the mark position. As you access bytes in the file, the mark position
keeps incrementing, so it is always pointing to the next byte to be accessed.

When vou open a file prior to reading from it or writing to it, ProDOS 16 sets
mark to 0, meaning that subsequent operations will take place at the beginning of
the file. (The bytes in a file are numbered from (0.) As will be shown later in this
chapter, it is easy to skip to any other position in the file using the ProDOS 16
SET_MARK command.

The other important position parameter is EOF. EOF, which stands for “end-of-
file,” contains the size of the file in bytes, so it can be thought of as a pointer to the
byte past the last byte in the file. EOF automatically increases as you write data to
the end of the file. You can increase or decrease EOF explicitly with the SET_EOF
L'I}]TI]TIH.“(J.

File I'O Commands 347

Reading

To read data from a file, you must perform the following steps:

1. Open the file

2. Move the mark position (if necessary)

3. Adjust newline mode (if necessary)

4. Read the data

5. Close the file
You can read only from a file which is open. Opening a file tells ProDOS 16 the
name of the file you want to deal with and permits it to set up a buffer area it needs

to manage the flow of data to and from the file. To open a file, use the OPEN
command; it requires the following parameter table:

OPEN (810)
Input
Symbolic or
Offset Name Result Deseription
+0to +1 ref_num R Reference number for the file
+2 to +5 pathname | Pointer to the pathname string
+6 ta +9 null_field R Reserved area for ProDOS 16

The only parameter you specify before calling OPEN is the pathname pointer. The
parameter OPEN returns is ref_num. It is an identifying number for the open file;
this number is used instead of a pathname by all other ProDOS 16 commands
dealing with open files. You must store ref_num in the reference number fields of
the parameter tables for any other such ProDOS 16 commands you will call before
closing the file.

ProDOS 16 sets the mark position to 0 when vou open a file—the start of the
file. Before actually reading data from the file, you may want to move to some other
position. For example, if the file is composed of a series of 50-byte records and vou
want to move directly to record #3 (numbering begins with #0), you would move
mark to position 150. This is done with the SET_MARK command; its parameter
table looks like this:

348 The ProDOS 16 Operating System

SET_MARK (516)

Input
Symbolic or
Offset Name Result Deseription
+0 to +1 ref_num | Reference number for the file
+2 to +5 position I The new mark position

The ref_num in the SET_MARK parameter table must be the same as the one
returned when yvou opened the file whose mark position is being changed.

Another matter you might want to deal with before reading is to adjust the
newline character. This is the character that, when read from a file, will terminate
a read operation even if the requested number of characters has not been read. If
you assign the newline character to a carriage return (ASCII $0D), for example, vou
can easily read a text file line by line.

The command for setting the newline character is NEWLINE. Its parameter
table looks like this:

NEWLINE ($11)

Input
Symbolic or
Offset Name Result Description
+0 to +1 ref_num | Reference number for the file
+2 to +3 enable_mask 1 Newline enable mask
+4 to +5 newline_char | Newline character

A character read from an open file is logically ANDed with the value of enable_
mask before a comparison with newline_char is made. If the end-of-line character
might be a carriage return whose high bit is on or off, use an enable_mask of $7F
and a newline_char of $0D; when you do so, a read will terminate with $0D or
$8D.

Set the enable_mask to $00 to disable the newline feature.

You are now ready to read information from the file with the READ command.
The parameter table looks like this:

File I/O Commands 349

READ ($12)

Input
Symbolic or
Offset Name Result Description -
+0to +1 ref_num 1 Reference number for file
+2 to +5 data_buffer 1 Pointer to start of data buffer
+6 to +9 request_count I Number of bytes to read
+10 to +13 transfer_count R Number of bytes actually

read

You must specify three types of information in the parameter list: the reference
number of the file to be read, the starting address of a block of memory where the
input data will be stored, and the number of bytes to be read. When the operation
ends. the transfer_count field contains the number of bytes actually read from the
file. This number will be less than the requested number if the active newline
character was encountered or if the end of the file was reached. If no characters
were read at all, the carry flag is set and the accumulator contains an error code of
$4C (end-of-file encountered).

As data is read from a file, the mark pointer automatically advances, so there is
no need to call SET_MARK explicitly after each read.

When you are all through with a file you should formally close it with the CLOSE
command. This frees up the memory spaces that ProDOS 16 allocates to the file
when it is first opened. The parameter table for the CLOSE command looks like
this:

CLOSE (814)

Input
Symbolic or
Offset _ Name Result Description o
+0 to +1 ref_num 1 Reference number for the file

Once a file is closed, you cannot read from it again until it has been reopened.

If the ref_num specified in a CLOSE command is $00, all files at or above the
current file level are closed. The file level is a number between 0 and 255 that you
can set using the SET_LEVEL command:

350 The ProDOS 16 Operating System

SET_LEVEL (51A)

Input
Symbolic or
Offset Name Result Deseription
+0 to +1 level | The new file level

To assign a certain file level to an open file, use SET_LEVEL before opening the
file with OPEN. You cannot change the level of a file after it is open.

If you want to determine the current file level, use GET_LEVEL. Its parameter
table is the same as that for SET_LEVEL.

You will not need to bother with file levels often. They become important when
you want to manage EXEC files properly. EXEC files are files to which the operating
system looks for input instead of the keyvboard. If vou switch to a higher file level
after opening an EXEC file, subsequent CLOSE operations will not close the EXEC
file.

The subroutine in listing 10-1 shows how to use many of the ProDOS 16 com-
mands just described. It opens a textfile, disables newline mode, determines the
file size with GET_EOF, uses the Memory Manager to allocate a block of that size,
reads the file into memory, and then closes the file.

Writing to a File

The procedure for writing to a file (see listing 10-2) is similar to the one for reading
from a file. Before actually writing, vou must open the file and, if necessary, position
the mark pointer. To perform the write operation, use the WRITE command; its
parameter table looks like this:

WRITE ($13)

Input
Symbolic or
Offset Name Result Description
+0to +1 rel_num I Reference number for the file
+2to +5 data_buffer I Pointer to start of data buffer
+6 to +9 request_count I Number of bytes to write
+10 to +13 transfer_count R Number of bytes actually written

File 'O Commands 351

The data_buffer field points to a block of data you wish to write to the file; the size
of this block is given by request_count. The transfer_count field returns the actual
number of bytes written to the disk. It will be less than the requested number if
the disk became full during the write operation or if a disk error occurred.

One common form of write operation is an append. This is the process of ex-
panding the size of a file by adding data to it. The following subroutine shows how
to append data to an existing file:

DpenParms AMOP
ref_num ps 2 ;Reference number
DC I4'FileName! ;jPointer to pathname
DS 4 sHandle to [/0 buffer
EOFParms ANOP
ref_numi Ds 2
paesitiaon DS 4 ;Position in file
WriteParms ANOP
ref_num? Ds 2
data_buff DC I4'Buffer! ;Buffer containing the data
request DC 14'512! iNumber of bytes teo write
transfer DS 4
CloseParms ANOP
ref_num3 Ds 2
FileName STR 'MYFILE.DEmMO! iName of file
Buffer Ds 512 ;Data to write

_OPEN DOpenParms
LDA ref_num

STA ref_numil

STA ref_num2

STA ref_num3
_GET_EOF EDFParms
_SET_MARK EOFParms
_WRITE WriteParms
_CLOSE CloseParms
RTS

;0pen the file

:Get reference number

; and store it in other
; parameter lists.

;Get the file size

;5et mark to end of file
ijWrite data te file
;Close the file

This example uses one command that has not been discussed vet: GET_EOF. GET_
EOF returns the size of the file, in bytes, in a four-byte field in its parameter table,
To do an append, all you must do is set the mark position to this value before
writing to the file, as shown in the example above.

352 The ProDOS 16 Operating System

The complete parameter table for GET_EOF looks like this:

GET_EOF (519)

Input
Symbolic or
Offset Name Result Description
+0to +1 rel_num 1 Reference number for the file
+2 to +5 eofl R The end-of-file position

Two other commands you may use in conjunction with write operations are GET_
MARK and SET_EOF. Here are their parameter tables:

GET_MARK ($17)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num I Reference number for the file
+2 to +5 position R The current mark position
SET_EOF ($18)
Input
Symbolic or
Offset ~ Name _ Result Description
+0to +1 ref_num 1 Reference number for the file
+2 to +5 eof 1 The new end-of-file position

File /O Commands 353

GET_MARK returns the current value of the mark pointer and SET_EOF sets the
size of the file to the value passed in its parameter table. You will use both of them
in situations in which you want to eliminate everything in a file past the current
mark position. Here is the subroutine to use:

_GET_MARK MarkParms ;Get current mark position
_SET_EOF MarkParms i and make it the new file size.
RTS

Such an operation is often performed in word processing programs when a file is
loaded into memory, modified, and saved to disk under the same name. If the
modified file is shorter than the original, and vou do not set the new EOF position
after the write, the file will still include the tail end of the original file.

When you write data to a file, the data actually is not saved to disk right away.
Instead, it is placed in a ProDOS IO buffer that is transferred to disk only when it
fills up or when the file is closed. You can force ProDOS to empty the /O buffer
at any time using the FLUSH command:

FLUSH ($15)

Input
Symbolic or
Offset Name Result Description
+0 to +1 ref_num I Reference number for the file

Calling FLUSH minimizes the risk of losing data if the system crashes or the power
goes off before the file you are writing to is closed. It does slow down the effective
execution speed of a program, however, so it is not used often.

Note that if ref_num is $00, all open files are flushed.

DEVICE-MANAGEMENT COMMANDS

The device-management commands are for dealing with block devices themselves.
not the individual files they contain. They perform such chores as low-level block
1/0 and disk formatting.

354 The ProDOS 16 Operating System

Formatting

Disks must be formatted with the FORMAT command before vou can save files to
them. Formatting is actually a two-step process:

1. Conditioning the magnetic surface of the disk
2. Writing boot code, directory, and block usage information on the disk in the

manner dictated by the operating system

Because formatting permanently erases any information on a disk, you should ask
the user to verify such an operation if the disk is not blank.
The structure of the parameter table for FORMAT is as follows:

FORMAT (§24)
Input
Symbolic or
Offset Name Result Description
+0to +3 dev_name I Pointer to the device name string
+4 to +7 vol_name I Pointer to the volume name
string
+8to +9 file_svs_id | Operating system ID code

The dev_name parameter is a pointer to the device name string (the string will be
.D1, .D2, and so on). The volume name string can be up to 16 characters long; it
must adhere to the ProDOS file-naming rules and must include a leading slash (/).

The meaning of the file_sys_id field was explained earlier in connection with the
VOLUME command. It describes the operating system used by the command. In
this case, it tells FORMAT the technique to use to lay out the disk directory
information on the volume.

Keep in mind that early versions of ProDOS 16 supported the formatting of
ProDOS disks only (file_svs_id = $01). You will get an error code of $5D (operating
system not supported) if you set file_sys_id to anything other than $01.

Device-management Commands 355

Accessing Specific Blocks

If you are writing a utility program such as a disk copier or a file undeleter, you
will probably want to read and write specific blocks on a disk. To do this, use the
READ_BLOCK and WRITE_BLOCK commands. They both use the same type of
parameter block:

READ_BLOCK ($22)

Input

Symbolic or
Offset Name Result Description
+0 to +1 dev_num | Device reference number
+2 to +5 data_buffer 1 Pointer to the read buffer
+6 to +9 block_num | Block number to read in
WRITE_BLOCK ($23)

Input
Symbolic or

Offset Name Result Description
+0to +1 dev_num I Device reference number
+2 to +5 data_buffer I Pointer to write buffer
+6 to +9 block_num I Block number to be written to

The memory blocks pointed to by data_buffer in each case are exactly 512 bytes
long (the size of a disk block). The block numbers on a disk range from 0 to an
upper limit that depends on the nature of the disk device. Use the VOLUME
command to determine the size of a disk volume in blocks.

The dev_num parameter needed by both READ_BLOCK and WRITE _BLOCK
is a device reference number (.D1, .D2, and so on), not the device name. To
determine the reference number for a given device name, use the GET_DEV_
NUM command; its parameter table is as follows:

356 The ProDOS 16 Operating System

GET_DEV_NUM (%20

Input
Symbaolic or
Offset Name Result Description o
+0 to +3 dev_name 1 Pointer to the device name string
+4 to +5 dev_num R Device reference number

When ProDOS first starts up, it scans the system for block devices and assigns them
unique device reference numbers. These numbers are consecutive integers begin-
ning with 1. This identification system is quite different from that used in ProDOS
§ in which devices are identified by slot/drive combinations.

Last Device Accessed

ProDOS 16 has a command for determining the reference number of the last device
accessed by a read or write command, This is the GET_LAST_DEV command:

CET_LAST_DEV ($21)

Input
Symbolic or
Offset Name Result Description
+0to +1 dev_num R Device reference number

If GET_LAST_DEV is unable to determine what the last device was, it returns an
error code of $60.

OPERATING-ENVIRONMENT COMMANDS

You can use the operating environment commands to determine the name of the
currently running application, the name of the boot volume, and the ProDOS 16
version number. These commands also include the important QUIT command,
which you will use to transfer control from one application to another.

Status Commands

It is often convenient for a program to know its own name. It may need to know
this information so it can transfer a copy of itself to a RAM disk, for example. Instead
of using a specific name, you should use the GET_NAME command, just in case
the user has renamed the program.

Operating-environment Commands 357

The parameter table for GET_NAME looks like this:

GET_NAME ($27)

Input
Symbolic or
Offset Name Result Description
+0 to +3 data_bufter R Pointer to application name string

The space for the name should be 16 bytes long so that there will be room for the
longest possible filename and the preceding length byte.

Notice that GET_NAME returns the filename only. The subdirectory in which
it resides is given by the 1/ prefix. Use GET_PREFIX to determine what this prefix
is.

To access files on the boot disk. you can specify a pathname constructed by adding
the “*/” prefix designator to a partial pathname. If vou need to know the actual
name of the boot disk, use the CET_BOOT_VOL command. Here is its parameter
table:

GET_BOOT_VOL (%28)

Input
Symbolic or
Offset Name Result Description
+0 to +3 data_buffer R Pointer to the volume name string

GET_BOOT_VOL returns a name which begins and ends with a slash, so the
data_buffer space should be 18 bytes long.

There is also a GET_VERSION command for determining the version number
of ProDOS. An application should check the version number if the program works
only with certain versions of ProDOS. Here is the parameter table:

358 The ProDOS 16 Operating System

GET_VERSION ($2A)

Input
Symbolic or
Offset Name Result ~ Description o
+0to +1 version R ProDQOS 16 version number

The low-order byte of the version word represents the minor release number and
the high-order byte represents the major release version. Version 2.1, for example,
would be stored as $0201. If the high-order bit of the result is 1, it is a prototype
version.

The QUIT Command

ProDOS 16 has a single command you can use to leave one application and transfer
control to another: QUIT. With it you can either run a specific program or return
control to the program whose UserlD is on the top of a Quit Return Stack.

The Quit Return Stack is where an application places its UserID if it wishes to
regain control the next time an application quits without specifying the pathname
of the next application to run. The availability of a Quit Return Stack makes it easy
for a supervisory program to execute subsidiary programs so that control always
eventually returns to the original program. In fact, the Gs program launcher always
pushes its UserID on the Quit Return Stack before launching an application. If it
did not, you would not return to it when an application ended.

Use the following parameter table with the Quit command:

QUIT (%29)
Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname 1 Pointer to next pathname
+4 to +5 Hags 1 Return/Restart flags

The pathname parameter points to the pathname of a ProDOS 16 or ProDOS §
system program. As usual, the pathname begins with a length byte. The current
application will load and run this program when you call the QUIT command.

Operating-environment Commands 359

If the pathname pointer is 0, and the Quit Return Stack is not empty, ProDOS
16 pulls a UserlD from the Quit Return Stack and executes the program with that
ID. If the Quit Return Stack is empty, ProDOS 16 calls up a standard dispatcher
subroutine that lets you type in the name of the next system program to run, reboot
the disk, or run the SYSTEM/START program.

Only the two high-order bits of the Hags parameter are significant. 1f bit 15 is 1,
ProDOS places the current application’s UserlD on the Quit Return Stack before
passing control to the application described by the pathname pointer. This means
that control eventually will return to the current application as later programs quit
with a 0 pathname parameter. If bit 15 is 0, nothing is placed on the Quit Return
Stack.

It bit 14 of the flags is 1, the calling program is capable of being restarted without
being reloaded from disk. If contral returns to it, it will not be loaded from disk
unless it has been purged from memory by the Memory Manager.

The QUIT command never returns control to the application. If an error oceurs,
an interactive dialog box appears on the screen with the error number on the last
line in the box.

INTERRUPT-CONTROL COMMANDS

ProDDOS 16 has a 16-entry internal table that contains the addresses of the subrou-
tines it calls when it receives word that a 65816 IRQ interrupt signal has occurred.
It calls each subroutine in sequence until one of them claims the interrupt (by
clearing the carry flag). If the interrupt is not claimed, a fatal system error occurs.

To use an interrupting device with ProDQOS 16, begin by loading its interrupt-
handling subroutine into memory. The characteristics of such a subroutine are as
follows:

It must be able to determine if the source of the interrupt is the device for
which it is designed,

If its device is not the source of the interrupt, it must set the carry flag with
SEC.

If its device is the source of the interrupt, it must handle the interrupt by
clearing the interrupt condition (usually by reading the device status), perform-
ing the necessary I/O operation, and then clearing the carry flag with CLC.

It must end with an RTL instruction.

The interrupt handler does not have to preserve the status of the A, X, or Y registers
since ProDOS restores and saves them.

Next, install the interrupt handler with the ALLOC_INTERRUPT command.
The last step is to enable interrupts from the external device.

Here is the structure of the ALLOC_INTERRUPT parameter table:

360 The ProDOS 16 Operating System

ALLOC_INTERRUPT ($31)

Input
Symbolic or
Offset Name Result Description
+0to +1 int_num R Interrupt handler reference number
+2to +5 int_code 1 Pointer to interrupt handler

In this table, int_num is the reference number returned by ALLOC_INTERRUPT.
Int_code is a pointer to the start of the code for the interrupt handler.

Note that if the interrupt handler uses system resources that may be busy (usually
ProDOS 16 itself), it should first check the Scheduler’s busy flag at SE100FF. If
this flag is non-zero, handling of the interrupt must be deferred by adding a task to
the Scheduler’s quene with the SchAddTask function:

FHA ispace for result

PushPtr TheHandler iSubroutine for Scheduler to call
_SchAddTask

PLA ipep Boolean

The Boolean result is true if the task was added to the queue.

HandleInt is the address of a subroutine (ending in RTL) inside the interrupt
handler that includes the call to the system resource. When the busy flag is turned
off by the interrupted program, the Scheduler automatically calls the HandleInt
subroutine to complete processing of the interrupt. (If you don't check the busy flag
and ProDOS is busy, you will get an error code of $07 when you attempt to use a
ProDOS command.)

To remove an entry from the interrupt handler table, use DEALLOC_INTER-
RUPT, but only after you have told the external device to stop generating interrupts.

DEALLOC_INTERRUPT uses this parameter table:

DEALLOC_INTERRUPT ($32)

Input
Symbolic or
Offset Name Result Description
+0to +1 int_num 1 Interrupt handler reference number

The int_num you pass to DEALLOC_INTERRUPT is the number returned by
ALLOC_INTERRUPT when you installed the handler.

Interrupt-control Commands 361

STANDARD FILE OPERATIONS

Two file-related operations are so common that Apple Computer, Inc. has developed
an entire tool set to support them. The first operation is for displaying a list of disk
files so that one can be easily selected. The second one is for requesting the name
for a file that is to be saved to disk.

The functions used to perform these operations form part of the Standard File
Operations tool set (tool set 23). These functions are called in the same way as any
other tool set function. They are not ProDOS 16 commands, so do not call them
with the standard ProDOS 16 calling sequence.

The Standard File Operations start-up function is SFStartup. Call it once at the
beginning of a program that uses the tool set:

PushWord MyID ;1D of program
PushWord DPAddr ;Address of one page in bank $00
_SFStartup

As you can see, SFStartup requires a direct page in bank 300 to work with.
The shut-down function is SFShutDown. It requires no input parameters and
does not return results.

SFGetFile

The file-selection function, SFGetFile, was used in the program in listing 10-1. It
creates a dialog box similar to the one shown in figure 10-2. At the top of the left
half of this box is the name of the current directory; below this name is a window
containing an alphabetical list of files in that directory, each preceded by an icon
indicating the general file type. The window has a vertical scroll bar that can be
used to move any portion of the list of files into view. On the right side are four
buttons labeled Open, Close, Cancel, and Disk.

You can select a file by highlighting its name (by clicking on it) and then clicking
the Open button, or simply by double-clicking on its name. You can also highlight
a name by typing the first character of the name; if there is more than one name
beginning with the character, the first one is highlighted. The up- and down-arrow
keys can be used to move through the list of files one entry at a time.

If the selected file is a subdirectory (marked by a file-folder icon), the name of
the current directory changes and a list of the files in the new, lower-level sub-
directory is shown. If the file is not a subdirectory, the dialog box disappears from
the screen and the program can deal with the selected file.

It is also possible to display and select files in higher-level subdirectories or on
other disks. To move to the next higher subdirectory (closer to the volume directory)
click once on the prefix name shown above the file window, type the Esc key, or

362 The ProDOS 16 Operating System

Figure 10-2. The SFGetFile Dialog Box

Select afile to view:
<= /Rpw/W/

[M16.5ound Disk)
[M16.5tdfile
1 M16.Texttool ﬁ

03 Mi6 Utility loen)
E ::B.I'hnduw (Tlose)
[My.Macs
[Standard.fAsm (Concel)

click the Close button. Subsequent clicks will eventually take vou right up to the
volume directory. To display the files on another disk, click the Disk button until a
list of the disk’s files appears in the file window,

Notice that the first time vou click the Disk button, the disk in the current drive
is examined to see if you have removed it and inserted another disk; if vou have
inserted a new disk, the files on it are shown. If you have not, the files on the disk
in the next drive are shown. Subsequent clicks will bring vou to the other drives in
the system.

SFGetFile requires six input parameters, including a pointer to a parameter list
called a reply record. When SFGetFile ends, the reply record can be read to
determine which file, if anv, was selected. Here is how to call SFGetFile:

PushWord WhereX iHorizontal position of box
PushWord WhereY iVertical position of box
PushPtr Prompt jFPointer to prompt string
PushPtr FilterProc iPointer to filter procedure
PushPtr TypelList jPointer to file type list
PushPtr ReplyRec iPointer to reply record
_SFGetFile

RTS

Standard File Operations 363

ReplyRec ANOP i5tandard reply record

Good Ds 2 ;True = open ; False = cancel
Filetype DS 2 iFile type code
Auxtype DS 2 jAuxiliary type code
Filename DS 16 sFile name strlng
Pathname DS 129 iFull pathname string
TypelList DC [1r2¢ i{byte, not word)
Dc 11'%04" :Text file
bc I1'$B0! :Source file
Prompt STR ISelect a file:! ‘.Prumptlng string

The first two parameters represent the coordinate of the top left-hand corner of the
dialog box. The Prompt string is displayed inside the box, just above the file window,
and is supposed to be a short message to the user.

Filter Procedure

FilterProc is a subroutine that SFGetFile calls to determine how to display the
name of a file or whether to display it at all. FilterProc returns one of three result
codes, which SFGetFile examines to make the determination:

0 Do not display the filename
1 Display the filename in dimmed text
2 Display the filename in standard text

Filenames which appear in dimmed text in an SFGetFile dialog box cannot be
selected by the user.

If the pointer to FilterProc is 0, SFGetFile does not call a filter procedure, and
all filenames are displayed and selectable.

SFGetFile calls the filter procedure in much the same way an application calls a
tool set function: it first pushes space for the result code (a word) on the stack, and
then pushes a pointer to the file’s 39-byte directory entry; finally, it calls the filter
procedure with a JSL instruction.

A filter procedure, which you must write yourself, should first decide how the
filename is to be displayed. The decision is usually based on the value of the file
type code or the filename, both of which are stored in the directory entry record
whose address is passed as a parameter. The structure of a directory entry record
is shown in table 10-4.

After deciding how to display the filename, the filter procedure must place the
appropriate result code in the space reserved for the result on the stack. The address
of this space will be the value of the stack pointer plus 8 if the stack pointer has not
changed since the procedure was entered.

364 The ProDOS 16 Operating System

Table 10-4:

The Format of a ProDOS Directory Entry

Offset

Meaning

+0 (low four bits)
+0 (high four bits)
+1 to +15

+16
+17 to
+19 to
+21 to
+24 to
+26 to
+28
+29
+30
+31 to
+33 to
+35 to
+37 to

+18
+20
+23
+25
+27

+32
+34
+36
+38

Length of filename

Storage type code

Filename character string

File type code

Block number of file's index block

File size (in blocks)

EOF position

Creation date

Creation time

Version of ProDOS which created the file
Lowest version of ProDOS that can use file
Access code

Auxiliary type code

Modification date

Modifieation time

Block number of first subdirectory block

Finally, the procedure must remove the input parameter from the stack by moving
the three-byte return address on the top of the stack up by four byvtes and adding
4 to the stack pointer. When the procedure ends with RTL, the result is on the top
of the stack, ready to be popped off by SFGetFile.

Here is an example of a filter procedure you could use to prevent files with a file
type code of $FF (ProDOS 8 system programs) from being displayed:

PHD
T5C
TCD

LDY #186
LDA [$61,Y
AND #S$00FF
CMP #SFF
BNE SetCode

;Save current d.p.
;Stack pointer to accumulator
;Align d.p. with stack

;0ffset to file type code
sAccess the file type code
;jlsolate the byte

;ProD0S 8 system program?
1+No, so branch

Standard File Operations 365

LDA #0 30
BRA SaveCode

don't include

SetCode LDA #2 12 = iInclude/selectable
SaveCode PLD iRestore direct page
STA 8,5 ;5ave the result
LDA 2,5 iMove the 3-byte return
5TA 6,5 ; address up by 4 bytes.
LDA 1,5 i(it's now at SP+1 to SP+3)
STA 5,5
T5C jAdd 4 to the stack pointer
CLC
ADC #4
TCS
RTL ;s{Don't use RTS!)

This procedure illustrates the standard technique for dealing with pointers that are
passed on the stack. After pushing the current value of the direct page register, this
routine defines a new direct page that is aligned with the top of the stack. This
means the pointer to the directory entry is at position $06 in the direct page (above
the two bytes pushed by PHD and the three bytes pushed by the initial JSL to the
procedure); because the pointer is now in direct page, you can access the elements
of the directory entry with the long indexed indirect addressing mode.

There are two other important matters related to the use of a filter procedure.
First, you will not be able to interfere with the display of a subdirectory file; such
files are always shown and are selectable. Second, SFGetFile allows a filter proce-
dure to change the contents of the A, X, and Y registers but not the direct page or
data bank registers. If you must change the direct page (as in the above example)
or the data bank, save it on the stack first and restore it just before the procedure
ends.

Type List

TypeList is a table containing a list of file type codes, preceded by a count byte;
each file type code occupies one byte in the table. If the filter procedure pointer is
0, SFGetFile displays the name of a file only if the file’s type code is in this list. If
a filter procedure is defined, filenames referred to in the type list are passed to it
for further analysis.

For example, if you want to display only files containing readable text, use the
following TypeList table:

TypeList DC [1'2! ;Two entries
DC H'04! sTextfile (TXT)
DC H'BO! ;APW source file (SRC)

366 The ProDOS 16 Operating System

Directory files are always displaved, even if they are not explicitly included in the
TypeList table.

If the pointer to a TypeList table is 0, all tvpes of files will be displayed unless
some are restricted by a filter procedure.

You should use a TypeList whenever the list of file type codes vou want to permit
is relatively short. If you are trying to prevent the display of only a few types of
files, it is more convenient to use a filter procedure instead of a Typelist. You will
also want to use a filter procedure if you wish to allow restricted file names to be
displayed, but not selectable. The filter procedure in listing 10-3 is an example of
such a filter.

Reply Record

When the user clicks the Open or Cancel button in the dialog box, control returns
to the application and the results are in the reply record. The first field, Good, is a
Boolean value indicating which button was pressed; it is true (non-zero) if it was
Open or false (zero) if it was Cancel,

The remaining fields have meaning only if Good is true. Filetype and Auxtype
hold the file type code and the auxiliary type code of the selected file, respectively.
The name of the file is stored at Filename and the full pathname of the file is stored
at Pathname. In each case, the name string is preceded by a length byte.

If Open is pressed, SFGetFile sets prefix 0/ (the default directory) to the directory
in which the selected file resides. Prefix 0/ does not change if Cancel is pressed.

SFPutFile

The function to use when vou want to request that a filename be entered is
SFFPutFile (see listing 10-2). This function generates a dialog box similar to the one
shown in figure 10-3. Like a SFGetFile box. this dialog box contains a directory
window on the left side, but all non-directory files are dimmed. What you are
supposed to do is move to the correct subdirectory of the correct disk using the
Open, Close, and Disk buttons (much as you would if you were using SFGetFile).
Next, you type in the name of the file to be saved in the text-entry rectangle in the
lower left corner of the box. This is an EditLine dialog item, so you can use all the
standard editing techniques to enter a name. When the SFPutFile dialog first
appears, a default filename is highlighted.

It is also possible to create a new subdirectory before selecting a filename. To do
this, type in a subdirectory name and then click the New Folder button.

Here is how to call SFPutFile:

FushWord WhereX iHorizontal position of box
PushlWord Wherey iVertical position of box
PushPir Prompt iPointer to prompt string
PushPtr OrigName iPointer to default filename

Standard File Operations 367

Figure 10-3. The SFPutFile Dialog Box

/ Rpw/

Free: 106k out of 102Yk. (T]
[P A+ ("New Folder)

% System
-5 Sustens (dpen

[Utilities .
CIW (Clese)
Y 9. Imp O

Enter a name for the file:(Save D

TEMPORARY. TXT (Cancel)

PushiWord MaxLen iMaximum length of respaonse
FushPtr ReplyRec iPointer to reply record
_SFPutFile

RTS

Many of the same types of parameters used by SFGetFile are also used by
SFPutFile. The new parameters used by SFPutFile are OrigName, a pointer to the
default filename, and MaxLen, the maximum length of the filename to be entered,
In most circumstances, you will want to set MaxLen to 15, the maximum length of
a ProDOS flename.

If the name selected (by clicking the Save button) is already being used as a
subdirectory name, SFPutFile displays an “I Can't Destroy a Directory” dialog box
with an OK button. Another name can be selected after the OK button is clicked.
If the name is already being used by a normal data file, SFPutFile displays a “Replace
Existing File?” dialog box with Yes and No buttons. If No is clicked, another name
can be selected: if Yes is clicked, SFPutFile ends.

SFPutFile also ends when the Cancel button is clicked or when a unique filename
is entered and the Save button is clicked. The Good field in the reply record is false

368 The ProDOS 16 Operating System

if the Cancel button was pressed; otherwise, it is true. If a name was entered, it is
returned in the filename field, and the pathname field contains the complete path-
name. In addition, the selected directory is assigned to prefix 0/.

REFERENCE SECTION

Table R10-1: The Parameter Tables for the ProDOS 16 Commands

NOTE: In these tables, an Input (I) is a parameter that must be provided before using the command.
A Result (R) is a parameter returned by the command. If the Result is a string, you must allocate a
space for the string that will be returned and provide a pointer to it.

ALLOC_INTERRUPT ($31)

Input
Symbolic or
Offset ~ Name Result Description
+0to +1 int_num R Interrupt handler reference number
+2 to +5 int_code I Pointer to interrupt handler
CHANGE_PATH ($04)
Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname I Pointer to the pathname string
+4 to +7 new_pathname 1 Pointer to the new pathname string
CLEAR_BACKUP_BIT (30B)
Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname I Pointer to the pathname string

Reference Section 369

CLOSE (514)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num 1 Reference number for the file
CREATE ($01)
Input
Symbolic or
Offset Name Result Description _
+0 to +3 pathname I Pointer to the pathname string
+4 to +5 access I Access code
+6 to +7 file_type I File type code
+8 to +11 aux_type I Auxiliary type code
+12 to +13 storage _type | Storage type code
+14 to +15 create_date I Creation date
+16 to +17 create_time 1 Creation time
DEALLOC_INTERRUPT ($32)
Input
Symbolic or
Offset Name Result Description
+0 to +1 int_num I Interrupt handler reference number
DESTROY (502)
Input
Symbolic or
Offset Name Result Description B
+0 to +3 pathname I Pointer to the pathname string

370 The ProDOS 16 Operating System

FLUSH ($15)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num | Reference number for the file
FORMAT (%24)
Input
Symbolic or
Offset Name Result Description
+0 to +3 dev_name I Pointer to the device name string
+4 to +7 vol_name 1 Pointer to the volume name string
+8 to +9 file_sys_id 1 Operating system [D code
GET_BOOT_VOL ($28)
Input
Symbolic or
Offset Name Result Description -
+0 to +3 data_buffer R Pointer to the volume name string
GET_DEV_NUM (320}
Input
Symbolic or
Offset Name Result Description
+0 to +3 dev_name | Pointer to the device name string
+4 to +5 dev_num R Device reference number

Reference Section 371

GET_EOF ($19)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num 1 Reference number for the file
+2 to +5 eof R The end-of-file position
GET_FILE_INFO (%06)
Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname I Pointer to the pathname string
+4 to +5 access R Access code
+6to +7 file_tvpe R File type code
+8 to +11 aux_type R Auxiliary type code (%)
+12 to +13 storage_type R Storage type code
+14 to +15 create_date R Creation date
+16 to +17 create_time R Creation time
+18 to +19 mod_date R Modification date
+20 to +21 mod_time R Modification time
+22 to +25 blocks_used R Blocks used by the file

(* For a volume directory, file, this field becomes total _blocks (the number of blocks on the volume).

372 The ProDOS 16 Operating System

GET_LAST_DEV ($21)

Input
Symbolic or
Offset Name Result Description _
+0to +1 dev_num R Device reference number
GET_LEVEL ($1B)
Input
Symbolic or
Offset ~ Name Result Description B
+0 to +1 level R The current file level
GET_MARK ($17)
Input
Symbolic or
Offset Name Result Description B
+0 to +1 ref_num | Reference number for the file
+2 to +5 position R The current mark position
GET_NAME ($27)
Ineput
Symbolic or
Offset Name Result Description _
+0 to +3 data_buffer R Pointer to application name string

Reference Section 373

GET_PREFIX (30A)

Input
Symbolic or
Offset Name Result Description
+0 to +1 prefix_num 1 Prefix number (0 to 7)
+2 to +5 prefix R Pointer to prefix name string
GET_VERSION ($2A)
Input
Symbolic or
Offset Name Result Description _
+0to +1 version R ProDOS 16 version number
NEWLINE ($11)
Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num 1 Reference number for the file
+2 to +3 enable_mask 1 Newline enable mask
+4 to +5 newline_char I Newline character
OPEN (810)
Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num R Reference number for the file
+2 to +5 pathname I Pointer to the pathname string
+6 to +9 null_field R Reserved area for ProDOS 16

374 The ProDOS 16 Operating System

QUIT ($29)

Input
Symbolic or
Offset Name Result Description
+0to +3 pathname 1 Pointer to next pathname
+4 to +5 Hags 1 Return/Restart flags
READ ($12)
Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num 1 Reference number for file
+2 to +5 data_buffer | Pointer to start of data buffer
+6 to +9 request_count I Number of bytes to read
+10 to +13 transfer_count R Number of bytes actually read
READ_BLOCK ($22)
Input
Symbolic or
Offset Name Result Description
+0to +1 dev_num I Device reference number
+2 to +5 data_buffer 1 Pointer to the read buffer
+6 to +9 block_num I Block number to read in

Reference Section

375

SET_EOF ($18)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num I Reference number for the file
+2to +5 eof I The new end-of-file position
SET_FILE_INFO (305)
Input
Symbolic or
Offset Name Result Description
+0 to +3 pathname 1 Pointer to the pathname string
+4 to +5 access I Access code
+6 to +7 file_type I File type code
+8 to +11 aux_type 1 Auxiliary type code
+12to +13 {not used}
+14 to +15 create_date I Creation date
+16 to +17 create_time | Creation time
+18 to +19 mod_date I Modification date
+20 to +21 mod_time 1 Modification time
SET_LEVEL ($1A)
Input
Symbolic or
Offset Name Result Description
+0to +1 level 1 The new file level

376 The ProDOS 16 Operating System

SET_MARK (516)

Input
Symbolic or
Offset Name Result Description
+0to +1 ref_num 1 Reference number for the file
+2to +5 position I The new mark position
SET_PREFIX (%09}
Input
Symbolic or
Offset Name Result Description
+0to +1 prefix_num | Prefix number (0 to 7)
+2 to +5 prefix | Pointer to the new prefix string
VOLUME (308}
Input
Symbolic ar
Offset Name Result Description
+0 to +3 dev_name 1 Pointer to the device name string
+4 to +7 vol_name R Pointer to the volume name string
+8 to +11 total_blocks R Size of the volume in blocks
+12 to +15 free_blocks R Number of unused blocks
+16 to +17 file_sys_id R Operating system 1D code

Reference Section 377

WRITE ($13)

Input
Symbolic or
Offset Name Result Description
+0 to +1 ref_num 1 Reference number for the file
+2 to +5 data_buffer I Pointer to start of data buffer
+6 to +9 request_count I Number of bytes to write
+10to +13 transfer_count R Number of bytes actually written
WRITE_BLOCK ($23)
Input
Symbolic or
Offset Name Result Description
+0 to +1 dev_num 1 Device reference number
+2 to +5 data_buffer 1 Pointer to write buffer
+6 to +9 block_num 1 Block number to be written to

Table R10-2:

ProDOS 16 Error Codes

Error
Number

Description

$00

$01

507

$10

511

N(} error tl(_'(:url't?d.
The ProDOS command number is invalid.

ProDOS is busy. This error might occur if vou try to use ProDOS
commands from inside an interrupt handler without first checking
that the Scheduler’s busy flag at SE100FF is 0.

The specified device cannot be found. ProDOS reports this error
after a CET_DEV_NUM command if it cannot locate the device.

The device reference number is invalid, ProDOS reports this error
if the device number is not in its list of active devices.

378 The ProDOS 16 Operating System

Error

Number Description -

$25 The ProDOS internal interrupt vector table is full. ProDOS reports
this error after an ALLOC_INTERRUPT command if 16 interrupt
vectors have already been allocated.

$27 A disk 1/O error occurred that prevented the proper transfer of data.
If you get this error, the disk is probably irreparably damaged. You
will also get this error if there is no disk in a 5 Va-inch disk drive,
however.

%28 The specified disk device is not present. This error occurs if you try
to access a second 5 Ya-inch drive when only one drive is present,
for example.

$2B A write operation failed because the disk is write-protected.

$2E An operation failed because a disk containing an open file was
removed from the drive. ProDOS can return this error only for
commands that involve checking the volume name.

52F The specified device is not connected to the system. This error
occurs if there is no disk in a 3 ¥2-inch drive.

$40 The pathname syntax is invalid because one of the filenames or
directory names does not follow the ProDOS naming rules or
because a partial pathname was specified and a prefix is not active.

$42 The file control block table is full,

$43 The file reference number is invalid.

544 The specified directory was not found. This means that one of the
subdirectory names in an otherwise valid pathname does not exist.

545 The specified volume directory was not found. This error occurs
when you remove a disk from a drive and then try to access it.

$46 The specified file was not found.

$47 The specified filename already exists.

$48 The disk is full.

%49 The volume directory is full. A volume directory cannot contain
more than 51 entries.

$4A The format of the file specified is unknown or is not compatible with

the version of ProDOS being used.

Reference Section 379

Error
Number

Description

$4B
$4C
54D

$4E

$50

$51

$52

$53
554

$55

$57

558

559

$5A

The storage type code for the file is invalid.
An end-of-file condition was encountered during a read operation.

The mark position is out of range. This error occurs if you attempt
to position the mark pointer past the end of the file.

Access to the file is not allowed. This error occurs when the action
prohibited by the access code byte is requested. The access word
controls read, write, rename, and destroy operations. The error also
occurs if vou try to destroy a directory file that is not empty.

The file is already open. You cannot reopen a file that is currently
open,

The directory is damaged. ProDOS reports this error when the file
count in a directory does not match the number of entries.

The disk is not a ProDOS-Hformatted (or Apple 111 SOS-formatted)
disk. ProDOS reports this error if it detects a non-ProDOS directory
structure.

A parameter is invalid because it is out of range.

Out of memory error. This error is returned by the QUIT command
if the ProDOS 8 application specified is too large to fit into the
allowable ProDOS 8§ memory space.

The volume control block table is full.

Two or more disks with the same volume name are on one line.
This is a “warning” error in that ProDOS still performs the operation
on the first disk it detects with the volume name required.

The specified device is not a block device. ProDOS supports block-
structured devices only.

The level parameter (passed to SET_LEVEL command) is out of
range.

The volume bit map is damaged. ProDDOS reports this error if the
volume bit map indicates that the disk contains blocks beyond the
maximum block count.

380 The ProDOS 16 Operating System

Error
Number Description

$5B Illegal pathname change. This error occurs if the pathnames
specified in the CHANGE_PATH command refer to two different
volumes. You can only move files between directories on the same
volume,

$5C The specified file is not an executable system file. ProDOS reports
this error if you attempt to use QUIT to pass control to a file that is
not a ProDOS 16 system file (S16, code $B3) (EXE, code $B5) or a
ProDOS 8 system file (SYS, code $FF).

35D The operating system specified is not available or not supported.
ProDOS returns this error if you use FORMAT to format a disk with
an operating system not yet supported by ProDOS 16 or if you try
to run a ProDOS 8§ system program when the SYSTEM/PS file is not
on the system disk.

$5E /RAM cannot be removed. This error when you QUIT a ProDOS 8
application if the /RAM RAM disk that uses auxiliary memory (bank
$01) cannot be removed.

$5F Quit Return Stack overflow. ProDOS returns this error if you try to
push another program 1D on the Quit Return Stack (using the QUIT
commamd) when the stack already has 16 entries on it.

$60 It is impossible to determine the last device which was accessed.
This error can only be returned by the GET_LAST_DEV command.

NoTE: Il a QUIT command results in an error, the error code is not returned to the application. Instead,
the code uppears in an interactive {!iulnﬂ box on the screen.

Table R10-3; The Major Functions in the Standard File Operations Tool Set ($17)

Function Stack Description of
Function Name Number Parameters Parameter
SFGetFile $09 WhereX (W) Top left-hand X coordinate
WhereY (W) Top left-hand Y coordinate
PromptStr (L) Ptr to prompt string
FilterProc (L) Ptr to filter procedure

Reference Section 381

Function Stack Deseription of
Function Name Number Parameters Parameter
TypeList (L) Ptr to type list table
ReplyRecord (L) Ptr to reply record
SFPutFile $0A WhereX (W) Top left-hand X coordinate
WhereY (W) Top left-hand Y coordinate
PromptStr (L) Ptr to prompt string
OrigNameStr (L) Ptr to default filename
MaxLen (W) Maximum length of response
ReplyRecord (L) Ptr to reply record
SFShutdown 503 [no parameters]
SFStartup 502 UserID (W) ID tag for memory allocation
DPAddr (W) Address of 1 page in bank 0
Table R10—-4: The Major Functions in the Scheduler Tool Set ($07)
Function Stack Description of
Function Name Number Parameters Parameter
SchStartup $02 [no parameters]
SchShutDown 503 [no parameters]
SchAddTask %09 result (W) Boolean: added to queue?

TaskPtr (L)

382 The ProDOS 16 Operating System

Ptr to interrupt handler

Listing 10-1:

A Subroutine for Loading a ProDOS File into Memory

LoadFile START
Using FileData
Using StartData

-
T

0
1

fAsk the user for the name of the file to open:

PushWord #120
PushWord #40
PushPtr SFPrompt
PushLong #0
PushLong #0

PushPtr ReplyRec
_SFGetFile

LDA good

BNE LoadlIt
SEC

RTS

Load the file inlto memory:

LoadIt _OPEN OpenParms
LDA refnum
STA refrnuml
STA refnum2
5TA refnum3
STA refnum4

we e e

e

_GET_EOF EOFParms

PHA

PHA

PushLong EOF
Pushlord MylD
Pushlord #%B000
PushLong #0
_NewHandle

1 X

VY

sprompt

s{no filter)

i(no file type list)
jreply record

;Get the result
iBranch if 1t was "Open"

;Set carry if "Cancel"”

;0pen the file

:Get reference number

: and store it in

; other parameter tables.

;Get size of file

;space for result

;Push size of file
;Program ID

;Locked

; (means nothing here)

Dereference the block handle so we can get a pointer for
the READ command. The handle returned by NewHandle is still
on the stack, so after PHD/TSC/TCD it's located at

locations $03-%06 in direct page.

PHD
TS5C
TCD

Reference Section

383

FileData

; SFGetFile data:

SFPrompt

ReplyRec
goaod
filetype
auxtype
FileName
fullpath

; Data for

OpenFarms
refrnum

EOFParms
refnumil
EOF

384 The ProDOS 16 Operating System

LDA
STA
LDY
LDA
STA

PLD

PLA
PLA

LDA
STA
LDA
STA

[($03]
data_buff
a2

[($031,Y
data_buff+2

EOQF
request
EOF+2
request+2

_MEWLINE HMLParms
_READ ReadParms
_CLOSE CloseParms

cLC
RTS

END

DATA

STR

ANOP
DS
DS
DS
DS
DS

;Get pointer (low)

;Get pointer (high)

;Restore d.p.

;Pop NewHandle result

jNumber of bytes to
; read is set by EOF.

;Disable newline feature
;:Read the entire file
;Close the file

iCarry clear means "Open'

'Select a file to view:!

2
2
2

16
122

file 1/0 operations:

ANDOP
DS
DC
DS

ANOP
DS
DS

2
[4'FileName!
4

;Non-zero if open pressed
;ProDOS file type

;ProD0S auxiliary file type
ijName of file in directory 0/
;Full pathname

:Reference number returned here
sPointer to filename
;Space for 1/0 buffer pointer

+EOF returned here

HLParms ANOP

refnum2 Ds 2
DC [2vo! ;jdisable newline read mode
Ds 2

ReadParms ANOP

refnum3 DS 2
data_buff DS 4 ;Pointer to data area
request Ds 4 iNumber of bytes to read
Ds 4 ;(number actually read)
CloseParms ANOP
refnumd DS 2
END
StartData DATA
MyID Ds 2 ;Store MMStartup result here

END

Listing 10-2: A Subroutine for Saving a Block of Memory to Disk as a

ProDOS File

0
7
.
¥
3
.
¥
.
¥
3
.
1

This subroutine asks the user to enter a filename,
then saves a block of data to that file on disk.

On entry, data_buff/data_buff+2 points to the start
of the data buffer. The length of the buffer is
stored at actual/actual+2. These variables are
defined in the FileData data segment.

SaveFile START

El

Using FileData

Ask the user to enter a name for the file:

PushWord #120 X

PushWord #40 3y

PushPtr SavePrompt spraompt

PushPtr FHN_Default sdefault filename
Pushbord #15 315 characters max
FushPtr ReplyRec ireply record
_SFPutFile

LDA good :Get the result

BNE Savelt ;Branch if it was "Save"
SEC ;:S5et carry if "Cancel"
RTS

Reference Section

385

Savelt ANOP

i5et up a pointer to the area to be saved:

LDA data_buff
STA w_buffer
LDA data_buff+2
STA w_buffer+2

;5et up the number of bytes to be saved:

LDA actual

STA w_request

LDA actual+2

STA w_request+2

_CREATE CreatePrms 1Create the file
_OPEN OpenParms ;0pen the file
LDA refnum

STA w_refnum

STA c_refnum

_WRITE MWriteParms iWrite data

_CLOSE CloseParms

CLC ;Clear carry if "Save"
RTS

END
FileData DATA
3 SFPutFile data:

ReplyRec ANOP

good DS 2 ;Non-zero if "Save" pressed
Ds 2 sInot used]
DS 2 ilnot used]
FileName DS 16 ;Filename selected
fullpath DS 129 iFull pathname in 0/
SaveFrompt STR 'Enter a name for the file:!
FH_Default STR 'TEMPORARY .TXT'" ;Default filename

i Data for file [/0 operations:

CreatePrms ANOP

Dc l4'"FileName! ;Pointer to filename
DC I2'$E3! iaccess code
DC I2'$04"! s TET file

386 The ProDOS 16 Operating System

DC I4'0 jaux type

DC 2 istorage type
DC [2+qg ;jcreation date
DC 1210 screation time

OpenParms ANOP

refnum Ds 2 ;Reference number returned here
DC I4'FileName! sPointer to filename
DS 4 ;Space for 1/0 buffer pointer

WriteParms ANOP

w_refnum DS 2

w_buffer DS 4 ;Pointer to data area
w_request DS 4 jNumber of bytes to write
w_actual DS o i(number actually written)
CloseParms ANOP

c_refnum DS 2

END

Listing 10-3: The Structure of an SFGetFile Filter Procedure

LR R R N N F EE E R

This is a filter procedure for SFGetFile.

It makes only TXT and SRC files selectable
from a file list: all other file names are
dimmed.

On entry, here is what is on the stack:

result (word)

pointer to directory entry (long)

return address (3 bytes)
FEEFFRAFFFREAB IR AR R FIERR AR FERE TR AN R RN

SF_Filter START

L

-
L]
*
-
L]
*
L]
*
Ll
L]
¥
.

; Direct page offsets:

01dDP EQu $01

RetAddr EQU 0ldDpP+2

DirEntry EQU RetAddr+3

Result EQU DirEntry+4
PHD ;Save direct page
TSC
TCD jAlign d.p. with stack
LDY #16 ;0ffset to file type code
LDA [DirEntryl,Y

Reference Section 387

AND
cMP
BEQG
cmp
BEG

LDA
BRA

FPO LDA
FP1 STA
PLD

LDA
STA
LDA
STA

TSC
CLC
ADC
TCS
RTL

END

388 The ProDOS 16 Operating System

#$00FF
#$B0
FPO
7304
FPO

#1
FP1

#2

T

i(use low byte only)
:SRC file?

:Yes, so branch

+TET file?

;Yes, =o branch

:1 = display/not selectable

12 = display/selectable
;Save the result
;Restore d.p.

;Move 3-byte return
; address up by 4 bytes.

;Add 4 to the
; stack pointer.

CHAPTER 11

Sound and
MusicC

One of the remarkable features of the Apple IIcs 1s 1ts ability to create incredibly
realistic sound effects and music. The Gs can do this because its sound system is
controlled by the powerful Ensoniq Digital Oscillator Chip (DOC), the same chip
used in the professional-quality Mirage Digital Sampling Keyboard and the Ensoniq
Piano.

With appropriate software, the Ensoniqg DOC can generate up to 32 user-defin-
able sounds simultaneously. The frequency of these sounds can be varied over a
wide range and the volume can be set to any of 256 discrete levels. As a result, it
is possible to mimic closely the acoustical behavior of any musical instrument. The
DOC is also capable of sampling incoming audio signals, including voice samples,
and converting them to digital form.

Note: To maintain compatibility with earlier Apple II models, the Gs also lets
you create simple sounds by toggling the Gs speaker with a soft switch at $E0C030,
You can use the SysBeep function in the Miscellaneous Tool Set to beep the speaker
using this technigque. SysBeep requires no parameters.

This chapter takes a close look at the Ensoniq DOC and examines ways of
manipulating its internal registers to create sound and music. It also discusses nusing
the Sound Manager to communicate with the DOC and to play back prerecorded
sound patterns. Finally, the Note Synthesizer’s ability to play musical tunes using
different simulated instruments is covered.

SOUND HARDWARE

A block diagram of the Gs sound system is shown in figure 11-1. All sound-control
commands are sent by a program running in the 65816 address space to the Sound
General Logic Unit (GLU). The GLU passes them on to the sound circuitry con-
trolled by the Ensoniq DOC. Because the Ensoniq is isolated from the 65516 by

389

Figure 11-1. The Apple llcs Sound Svstem Block Diagram

system volume control

Sound
65816 GLU

Ensoniq DOC
Sound Chip

speaker

64K
RAH

Table 11-1: The Sound GLU Registers

A A

Amp.

Lo

headphone
jack

channe] address 2
channe] address strobe
channe| address |
channe

analeg sutpy

analeg ground

analog wput

7-pin Molex
connector

Register Name Address
Sound Control $C03C
Data $C03D
Address Low $CO3E
Address High 3CO3F

the GLU in this way, it can generate sound independently of the current application
running in memory. That is, the application can perform other tasks while sound is

plaving in the background.

Sound GLU

The Sound GLU contains four registers for communicating with the DOC (see table
11-1). The Sound Control register shown in figure 11-2 is the most complex. The
lower four bits control the output volume leve] of the audio amplifier. The Gs sound
tools put the volume level (as set hy the Control Panel) into these bits before thev

access the DOC.

390 Sound and Music

Figure 11-2. The Sound Control Register

7l6|ls5|4|3|2]1]0 $EOCO3C

L system volume
(0 to 15)

must be O

1 = sauto-increment addresses
0 = don't auto-increment

| = addresses are for DOC RAM
1 = addresses are for DOC registers

1 = DOC is busy
0 =DOC is free

Bit 7 is a status bit that indicates whether the DOC is ready to respond to read and
write operations, It is ready only if this bit is 0.

Bit 6 controls whether the value in the Sound GLU 16-bit address register refers
to an address in the DOC’s special 64K RAM waveform buffer (bit = 1) or to a
DOC register number (bit = 0).

Bit 5 controls whether the GLU address register is to increment automatically
after a data register access (bit = 1) or whether it is to stay the same (bit = 0).
Setting the auto-increment bit makes it easier to access a range of registers or RAM
addresses.

The 16-bit address register contains either an address in the DOC RAM area or
a DOC register number, depending on the state of bit 6 of the Sound Control
register. For register accesses, the high-order part of the address register is ignored.

The data register can be used to write data to DOC registers or to DOC RAM,
as well as for reading data. Here is how to read or write a byte of data:

1. Adjust the value in the Sound Register to indicate whether a DOC register
or DOC RAM is to be accessed, and set the auto-increment bit to the desired
state. The volume bits should be set to the system-volume value (it is stored
in the low-order four bits of SE100CA).

Sound Hardware 391

2. Store the DOC register number, or the DOC RAM address, as the case may
be, in the address registers.

3. Store the data byte in the data register (write operation) or load the data
byte from the data register (read operation).

One caveat should be mentioned that affects read operations involving the DOC
registers or DOC RAM. A read operation immediately following the storing of an
address in the Sound GLU address register lags by one eycle, so you must always
ignore the first result returned. If auto-increment is on, vou need only ignore the
first result in a sequence of successive read operations.

A final note on the Sound GLU DOC registers: Apple has warned developers
not to access these registers directly, because their functions or addresses may
change in future versions of the ¢s. If you need to manipulate the DOC registers
or DOC RAM, vou should use the Sound Manager functions described later in this
chapter.

Ensoniqg DOC

The Ensoniq DOC is the heart of the Gs sound system. It contains 32 independent
oscillators (numbered from 0 to 31) that can be used to sample, at user-definable
rates, digitized audio waveforms stored in memory. This sampling rate indirectly
sets the frequency of the sound generated by the oscillator. The DOC has a total of
227 internal registers for controlling the operation of its oscillators and of the DOC
chip itself.

Because each oscillator operates independently of any other, vou can play 32
waveforms simultaneously! The s sound tools pair these oscillators off to create 16
voices or generators. This is done to make it possible to create richer and more
realistic sounds. One of these generators (corresponding to oscillators 30 and 31) is
reserved for use as a general-purpose timer by the Gs sound tools.

The output signal of the DOC goes to an analog circuit that amplifies the signal
before sending it to the Gs speaker (or other audio output device). The gain of the
amplifier is the system volume set by the Sound Control register in the Sound
GLU.

The audio waveforms are stored in a 64K RAM memory area dedicated to the
DOC. This RAM does not form part of the 65516 address space and can be accessed
only through the Sound GLU registers.

An audio signal is called a waveform, because if vou plot a graph of signal intensity
{amplitude] versus time for a pure tone, you get a series of sinusoidal waves, as
shown in figure 11-3. The frequency (or pitch) of the signal is expressed in cycles
per second, or Hertz. As far as the DOC is concerned, however, the waveform need
not be a symmetric wave at all. It could have a completely random form (white
noise) or a complex, but periodic, form made up of a combination of sinusoidal
waves. By playing with the waveform vou can generate all sorts of interesting sound

392 Sound and Music

Figure 11-3. Audio Waveforms

T

Amplitude

one cycle Time

variations: in fact, one of the reasons different musical instruments do not sound
exactly the same is that the waveforms they generate for the same pitch are different.

A digitized waveform stored in the DOC BAM area is a series of bytes repre-
senting the amplitude of the sound wave at fixed time intervals. The bytes can take
on values from $01 (low volume) to $FF (high volume). A DOC oscillator stops
when it encounters a $00 byte.

Sound Output

The DOC steps through a waveform at a user-definable rate and feeds the bytes it
reads to a built-in digital-to-analog converter. The analog output from the converter
goes to four different destinations:

» The built-in two-inch speaker

* The RCA mini headphone/speaker output jack. You can connect Walkman-
style headphones or (with an adapter) the input line of your stereo set to this
jack

* Pin 3 of the T-pin Molex connector used by the DOC

« Pin 11 of the RGB video connector (this is for the benefit of RGB monitors
with internal speakers)

Note that if the headphone/speaker jack is in use, output to the speaker is auto-
matically disabled.

Software that creates sound using the DOC can assign the sound to any of eight
output channels. (The DOC actually can handle up to sixteen channels, but the cs
supports only eight of them.) The channel address appears on pins 4, 5, and 7 of

Sound Hardware 393

Table 11-2: The 227 Ensonig DOC Registers

Register
Register Name . _Nurrtbrr
Frequency Low 500 + OSC
Frequency High %20 + OSC
Volume $40 + OSC
Data $60 + OSC
Address $80 + OSC
Control $A0 + OSC
Wavetorm $CO + OSC
Oscillator Interrupt 3E0
Oscillator Enable sE1
Analog-to-Digital Converter SE2

0SC = the oscillator number ($00 to $1F). These are 8-bit registers.

the Molex connector. An external demultiplexer can monitor this address and direct
the output signal (on pin 3) to a different speaker for each channel. The MDIdeas
SuperSonic stereo card, for example, works with two speakers, sending all sound
for even-numbered channels to one of them and all sound for odd-numbered chan-
nels to the other.

THE ENSONIQ DOC REGISTERS

Each of the 32 oscillators in the Ensoniq DOC has seven S-bit registers associated
with it (see table 11-2). Two of these registers set the waveform sampling rate
(frequency) of the oscillator; the others set the volume, the position of the oscillator’s
waveform in the DOC RAM area, the characteristics of the waveform, and the
oscillator’s operational mode. Finally, one register contains the last byte the oscillator
loaded from the waveform table.

There are also three general-purpose DOC registers you can use to enable
oscillators, read interrupt status information, and perform analog-to-digital conver-
sion of incoming audio signals.

In total, there are 227 registers inside the Ensoniq DOC chip. The sections that
follow examine precisely how to use them.

394 Sound and Music

Oscillator Registers

This section discusses the seven registers assigned to each oscillator. Keep in mind
that. as shown in table 11-2, the register number for a particular oscillator is the
sum of a base register number and the oscillator number. For example, the base
register number for Volume is $40; therefore, the Volume register for oscillator $1C
is $5C ($40 + $1C).

Frequency Low ($00-$1F) and Frequency High ($20-83F). The DOC's internal
16-bit frequency register is a concatenation of the Frequency Low and Frequency
High registers. The value stored in this combined register sets the speed at which
the oscillator retrieves data from the waveform in memory. This speed, called the
sampling rate, is given by the following formula:

{Scan Rate) * F

Sampling rate = ~— (7 REs) samples/second
where
7.159 * 10°
Scan Rate = L — /second

(8 * (0SC+2)

In these formulas, F represents the value stored in the 16-bit frequency register
and OSC represents the number of enabled oscillators. RES is the number stored
in the resolution bits of the Waveform register (see below).

Note that the sampling rate is not the same as the frequency of the output signal
to the speaker. This frequency depends on the size of the waveform being played
by the oscillator. To determine the frequency of the speaker signal, divide the
sampling rate by the number of bytes needed to define one cycle of the wavetorm.

Volume ($40-85F). The Volume register sets the volume of the oscillator. When
the DOC reads a waveform data byte from memory, it multiplies it by the value in
the Volume register before passing it to the output amplifier.

Data ($60-$7F). The Data register contains the last byte the DOC read from the
waveform for the oscillator.

Address ($80-$9F). The Address register contains the page number inside the
DOC RAM at which the waveform for the oscillator begins. The waveform must
start on a page boundary.

Control (8A0-8BF). The Control register is used to set the operational mode of
the oscillator. It controls the output channel with which the oscillator works, whether

The Ensonig DOC Registers 395

Figure 11-4. The Oscillator Control Register

7|6 |5|4 |3 (2|1 |0 |DOC Registers $A0-$BF

- 'r -
always 0] | 1 = halted
0 = running
oscillatormode

0 0 Free-Run
0 1 Dne-Shot
1 0 Sync
1 1 Swap

1
0

interrupt on
interrupt off

n

channel address
(0to7)

interrupts are enabled, the oscillator mode, and whether the oscillator has been
halted or is playing,

The meanings of each of the bits in the Control register is shown in figure 11-4.
The channel address is three bits wide so there are eight possible output channels.
As shown in figure 11-1, the channel address lines are brought out at the 7-pin
Molex connector. By connecting a multiplexer to this connector, you can easily
generate multiphonie sound.

If interrupts are enabled for the oscillator, the interrupt flag in the Oscillator
Interrupt register is set when the oscillator finishes playing its waveform. In addition,
the oscillator number is stored in bits 1-5 of the Oscillator Interrupt register.

The halt bit controls whether the oscillator is playing. When it is 1, the oscillator
is halted and no sound is generated. When it is 0, the oscillator begins playing its
waveform.

Four different oscillator modes can be used:

Free-run mode (0). In free-run mode, the oscillator plays the waveform again
and again until the halt bit of the Oscillator Control register is set by the
application. (The oscillator also halts if it encounters a $00 byte in the waveform

table.)

396 Sound and Music

Figure 11-5. The Waveform Register

7|6/ 5|4 |3| 2|1 |0 | DOCRegisters $CO-$DF

v—.—
T | waveform resolution
0~7
always 0 {)
waveform table size
000 256
001 512
010 1024
011 2048
100 4096
101 B192
110 16384
111 32768

One-shot mode (1). In one-shot mode, the oscillator plays the waveform once
and then sets its halt bit and stops. This is the mode you would use if the
waveform represents a long, non-periodic sound.

Sync mode (2). In sync mode, a pair of adjacent evenfodd oscillators work
together in synchronization. (The odd-numbered oscillator always has the
higher number of the two.) In particular, when the even-numbered oscillator
begins playing its waveform, the odd-numbered one begins playing its waveform
as well.

Swap mode (3). In swap mode, as in sync mode, a pair of adjacent even/odd
oscillators work together, but in a different way. First the enabled oscillator
runs in one-shot mode. When it finishes stepping through its waveform table,
it sets its halt bit and then clears the halt bit of the other oscillator so that it
will begin playing its waveform. An even/odd pair of oscillators in swap mode
is called a generator.

Waveform ($C0-8DF). The Waveform register contains the size of the waveform
being played by the oscillator. It also tells the DOC the resolution of the waveform.

As shown in figure 11-5, the size of the waveform is called the Table Size and is
represented by a 3-bit code number. These codes correspond to sizes of 256, 512,

The Ensonig DOC Registers 397

Figure 11-6. The Oscillator Interrupt Register

7!/6|5|4| 3|21 |0 | DOC Register $EO
] 1 L aiweys |

oscillator number that
ceused the interrupt (0 - 31)

always 1

interrupt occurred
interrupt did not occur

i

1024, 2045, 4096, 8192, 16384, and 32768 bytes, respectively. No other sizes are
permitted.

The wavetorm resolution is also represented by a 3-bit code number from 0 to
7. Earlier in this section the ways in which this value participates in the waveform
sampling rate calculation were discussed. If the resolution is raised by 1, the
sampling frequency is halved; similarly, if it is lowered by one, the sampling fre-
quency doubles. In most cases, the resolution code should be set equal to the Table
Size code so that the effective frequency of the signal sent to the speaker is not
affected by powers of two.

General Registers

The following three registers in the DOC are of general use and do not relate to
any specific oscillator,

Oscillator Interrupt ($E0). The Oscillator Interrupt register indicates whether an
interrupt has occurred and, if so, which oscillator caused it (see figure 11-6). An
interrupt will occur when an oscillator finishes playing its waveform if the interrupt
enable bit in the oscillator’s Control register is set to 1. Bit 7 contains the interrupt
flag, and bits 1-5 contain the number of the oscillator that caused the interrupt (0
to 31).

Oscillator Enable ($E1). This register controls the number of enabled oscillators
(see figure 11-7). This number can range from 1 to 32 and is stored in bits 1-5 of
the register. (The minimum is not 0 because at least one oscillator must be enabled.)
Oscillators are enabled in numeric order, starting with #0.

398 Sound and Music

Figure 11-7. The Oscillator Enable Register

7|6|5|4|3| 2|1 |0 | DOCRegister $EI
T T—aIWugso

number of oscillators
enabled (1 to 32)

always O

Note that the number of enabled oscillators affects the rate at which the DOC scans
the oscillator wavetables. The more oscillators are enabled, the slower the rate. To
simplify calculations, the Gs sound tools enable all 32 oscillators.

Analog-to-Digital Converter ($E2). This register contains the output of an analog-
to-digital converter whose input line is connected to pin 1 of the Molex connector
used by the Ensoniq chip (see figure 11-1).

To read the result of the analog-to-digital conversion and to initiate the next
conversion, all you have to do is read this register. The conversion process takes
about 31 microseconds, so do not read the register again until this time has elapsed.
If you do, the result read will be meaningless.

SOUND MANACGER

The Sound Manager (tool set 8) lets you manipulate the DOC registers and DOC
RAM in such a way that you do not have to concern yourself with the mechanics of
the Sound GLU or the /O addresses it uses. It also defines and lets vou use a free-
form synthesizer which is useful for playing back digitized sound effects or one long
musical piece.

The Sound Manager deals with oscillators in swap mode pairs called generators.
Sixteen generators are defined, but one is reserved for use as a timer.

Before using the Sound Manager, start it up by calling SoundStartup:

PushWord DPAddr ;Pointer to one-page in bank %00
_SoundStartup

The direct page work area whose address is passed to SoundStartup must be page-
aligned.

When you are through with the Sound Manager, call SoundShutDown (no pa-
rameters). It shuts off all the DOC oscillators.

Sound Manager 399

Accessing the DOC RAM Area

Before you can create sound with the DOC, there must be a waveform in the DOC
RAM. You can put one there with WriteRamBlock:

PushPtr Mylave iPointer to wave data
PushWord #%0000 iStarting address in DOC RAM
PushWord #8100 iSize of wave in bytes
_MriteRamBlock
RTS

MyWave DS 256 jInsert wave definition here.

The low-order byte of the starting address passed to WriteRamBlock should be $00,
because the DOC expects waves to begin on page boundaries. The wave size should
be $100, $200, $400, $800, $1000, $2000, $4000, or $8000, because these are the
only sizes the DOC supports,

The waveform can contain any series of one-byte values, but it must not contain
a $00 byte, because a DOC oscillator stops playing when it encounters a 0 value.
The mid-range value of $80 corresponds to a 0 output voltage. Listing 11-1 shows
how to create two types of simple one-page waveforms, a sinusoidal wave and a
triangular-shaped wave.

To read data fromy DOC RAM to main memory, use ReadRamBlock:

PushPtr MyBuffer iPointer to buffer in main memory
PushWord #%$1000 ;Starting address in DOC RAM
PushWord #%400 sNumber of bytes to transfer
_ReadRamBlock

Volume Control

The Sound Manager has two functions related to volume settings: GetSoundVolume
and SetSoundVolume. They can be used to read or set the volume level of any
generator or the system volume.

To read the volume, call GetSoundVolume as follows:

PHA ;jspace for result
PushWord GenNum igenerator number
_GetSoundVolume

PLA iPop the volume setting

If GenNum is between 0 and 14, it represents a generator number, and the volume
number for that generator is returned on the stack. The volume number can range
from 0 to 255.

If GenNum is greater than 14, the system volume is returned. The svstem volume
ranges from 0 to 15 only and is returned in bits 4-7 of the result.

400 Sound and Music

You can set the volume of a particular generator, or the system volume, with
SetSoundVolume:

PushWord VolLevel ;Volume level (0 to 15)
PushWord GenNum sGenerator number
_SetSoundVolume

As with GetSoundVolume, if the generator number is above 14, the system volume
is affected and the volume code must be stored in bits 4-7 of VolLevel.

Free-form Synthesizer

The Sound Manager supports a free-form synthesizer you can use to play back any
digitized sound stored in the DOC RAM area, It is intended for the playback of
complex, non-repeatable waveforms that have previously been digitized. To play
musical notes, it is much more convenient to use the Note Synthesizer, as we will
see below.

The main free-form synthesizer function is FFStartSound. It allocates a particular
generator and causes it to start playing a waveform stored in memory. Here is how
to call it:

PushWord #GenNum+*256+%01 ;Generator (high), mode (low)
PushPtr FF_Parms jpointer to parameter block
_FFStartSound

RTS

FF_Parms ANOP

DC l4'WaveForm' :Pointer to waveform

DC [2tWaveSize! ;5ize of waveform in pages
Dc I2'Frequency' ;Playback rate

DC I2'DOC_Adde! ;DOC position for wave

DC [2'BufferSize! ;DOC wave size code

Dc [4'HextWave! ;Pointer to next parm table
DC 12'Volume' sGenerator volume (0-255)

The first parameter passed to FFStartSound contains the generator number (0 to
14) in the high-order byte and a mode code of $01 in the low-order byte. The value
$01 means the generator is used for free-form synthesizer mode.

The parameter table tells the free-form synthesizer all it needs to know about
the waveform to be played. WaveForm is the address of the waveform in the 65816
memory space and WaveSize is its size in 256-byte pages.

The Frequency field contains the number to be placed in the DOC's frequency
register for the two oscillators in the generator; this value can be determined using
the following formula:

Sound Manager 401

32 * Sampling Rate
1645

Frequeney Register =

The sampling rate is expressed in cycles/second (Hertz) in this formula.

DOC_Addr is the starting address in the DOC RAM area to which the waveform
is to be transferred before it is played. BufferSize is a code from 0 to 7 representing
the Table Size of the form. (See the discussion of Table Size in connection with the
DOC Waveform registers earlier in this chapter.)

NextWave is the address of the parameter block for the waveform to be played
when the current waveform has been finished. Set it to 0 for the last parameter
block. If you want to play one wave over and over again, set the NextWave parameter
to the address of the one and only parameter table. (You can stop the sound with
FFStopSound.)

Volume is the volume of the waveform and can range from 0 (low) to 255 (high).

Four other major functions can be used to control the free-form synthesizer or
to check its status:

» FFStopSound stops one or more generators
« FFSoundStatus checks the status of all generators
» FFGeneratorStatus checks the status of one generator

« FFSoundDoneStatus determines if the synthesizer is playing a waveform

Two minor functions, SetSoundMIRQV and SetUserSoundIRQV, are used to install
special sound interrupt handlers and are rarely used by applications. They are not
discussed here.

You can use FFStopSound to stop any generators that may still be running:

PushWord GenMask :Generator mask
_FFS5topSound

Each generator corresponds to a unique bit in the generator mask: bit 0 for generator
#0, bit 1 for generator #1, and so on. To stop a particular generator, set its bit in
the mask to 1. For example, to stop all 15 usable generators, use a mask of $7TFFF.
Bit 15 of the mask corresponds to the reserved generator, so it must always be 0 in
the mask.

To determine which generators are playing at any given time and which are idle,
use FFSoundStatus:

PHA ;Space for result
_FFSoundStatus
PLA ;Pop the generator mask

402 Sound and Music

FFSoundStatus returns a generator mask that is of the same form as the one passed
to FFStopSound. If a bit is set to 1. the generator corresponding to that bit is
currently playing.

FFGeneratorStatus returns the first two bytes of the generator control block
(GCB) for the generator. These bytes contain the synthesizer mode, generator
number, and channel number.

The GCB is a 16-byte data structure used by the free-form synthesizer to keep
track of the attributes and status of the generator. The GCB’s for each of the sixteen
generators are stored in the one-page direct page area whose address is passed to
SoundStartup.

To call FFGeneratorStatus, pass it the number of the generator in question:

PHA ;space for result
PushWord GenNumber ;Generator number
_FFGeneratorStatus

PLA ;Pop the status word

Bits 0-3 of the status word contain the generator number, bits 4-7 contain the
output channel number (normally 0) and bits 8-11 contain the mode code. The
mode code is $1 for the free-form synthesizer. Bit 15 is set to 1 if the last block of
the waveform has been loaded.

The last major free-form function is FFSoundDoneStatus. Call it to determine if
a free-form synthesizer generator is currently playing anything:

PHA ;space for result
PushWord GenNumber ;generator number
_FFSoundDoneStatus

PLA ;Busy code

If the result is $0000, the generator is still playing; if it is $FFFF, it is done.

Low-level Access to DOC Registers and DOC RAM

As mentioned earlier in this chapter, you should not use the Sound GLU registers
to communicate directly with the Ensonig DOC registers or RAM. Instead, you
should use the Sound Manager's GetTableAddress function to get the address ofa
table containing the addresses of six low-level DOC control subroutines; vou should
then call these subroutines to communicate with the DOC. GetTableAddress also
returns the addresses of two useful oscillator/generator translation tables and a table
of GCB offset addresses.
Here is how to call GetTableAddress:

PHA ;jspace for result

PHA

_GetTableAddress

PopLong DOC_Table ;Pop pointer to table

Sound Manager 403

Table 11-3: The Low-level DOC Subroutine Table Whose Address Is Returned
by GetTableAddress

Subroutine
or

Table Pointer Offet I
Read Register 300
Write Register S04
Read RAM 508
Write RAM $0C
Read Next $10
Write Next 514
Oscillator Table 518
Generator Table 31C
GCB Table $20

DOC _Table should be a direct page variable, so that you can use it to indirectly
access the contents of the table.

The format of the table whose address is returned by GetTableAddress is shown
in table 11-3. It contains nine 4-byte addresses (low-order bytes first) of low-level
DOC subroutines or data tables.

The first six entries in the table are 4-byte addresses of subroutines (low-order
bytes first) that can be called with a JSL instruction. Unfortunately, the 65816
indirect long addressing mode is useful only if you know in advance where the
address table is located, and you do not have this information. The easiest way to
call a subroutine is to store its address in the 3-byte operand of a JSL instruction,
low-order byte first. This involves ugly self-modifying code, but there is no easy
alternative.

For example, here is how to set up a JSL to the write subroutine (at offset $04):

TablePtr GEGQU 300 ipointer to low-level table
PHA ijspace for result
PHA
_GetTableAddress iGet table pointer

FoplLong TablePtr

404 Sound and Music

LDA [TablePtr] ;Get address (low)

CLC
ADC #3504 1... add offset
STA JSL_Patch+1 ;Set low word of operand
LDY #2
LDA [TablePtrl,Y ;Get address (high)
ADC #0 i(adjust for any carry)
SEP #3520 1B-bit accumulator
LONGA OFF
STA JSL_Patch+3 ;Save bank byte
REP #%20 ;16-bit accumulator
LONGA ON
RTS

JSL_Patch JSL $123456 :Call low-level subroutine
RTS

Before a DOC subroutine is called, the 63816 must be in native mode with 16-hit
index registers (x=0) and an 8-bit accumulator (m=1). If you are in full native mode,
vou can switch to an 8-bit accumulator with the following assembler instructions:

SEP #%20
LONGA OFF

After you call the subroutine, you can switch back to a 16-bit accumulator with a
REP #%20 instruction, followed by a LONGA ON directive.

The Oscillator Table entry is a pointer to a 16-byte generator-to-oscillator trans-
lation table. This table contains a list of one-byte oscillator numbers, in generator-
number order. The second oscillator for a given generator is always the next higher-
numbered one. For example, to determine the two oscillators for generator #9, vou
would use a code fragment like this:

OscThbl GEQU $04

LDY #%18

LDA (TablePtrl,Y ;Get pointer (low)

STA OscThbl

LDY #%1A

LDA [TablePtrl,Y ;Get pointer (high)

STA OscThl+2

SEP #3820 ;Switch to 8-bit accumulator
LONGA OFF

Sound Manager 405

LDY #9 ;Generator #9

LDA [0scTbll,Y ;Get first oscillator

STA Osct ;Save number

INC A ;jSecond oscillater = first + 1
STA Osc2 sSave number

REFP #3%20 ;Back to 16-bit accumulator
LONGA ON

RTS

The Generator Table entry points to a 32-byte table you can use to determine which
oscillators are associated with which generators. It contains a list of generators in
oscillator-number order.

The GCB Table contains the one-byte offset positions to the generator control
blocks for the 15 usable generators, in generator-number order. The base point for
the offsets is the address of the bank $00 page passed to SoundStartup. Most
applications have no need to access the GCB.

The methods that can be used to call the six low-level DOC subroutines are
discussed in the sections below.

Read Register. Call this subroutine to read the contents of any of the 227 registers
in the DOC. The register number must be in the X register. The contents of the
specified DOC register is returned in the 8-bit accumulator.

Write Register. This subroutine stores a number in any DOC register. The register
number must be in the X register, and the 8-bit accumulator contains the number
to be written.

Read RAM. This subroutine reads the value stored at any location in the DOC
RAM area. On entry, the X register must contain the address. The value is returned
in the 8-bit accumulator.

Write RAM. This subroutine writes the value in the 8-bit accumulator to any
location in the DOC RAM area. On entry, the address to be written to must be in
the X register.

Read Next. If the previous low-level call was Read Register or Write Register,
this subroutine returns in the 8-bit accumulator the data in the next DOC register.
If the previous call was Read RAM or Write RAM, it returns the data in the next
RAM location.

Write Next. This subroutine is similar to Read Next, but it returns in the 8-bit
accumulator the contents of the next register or the next RAM location, as the case
may be.

406 Sound and Music

Using Low-level Subroutines: Digitizing Analog Input

The CONVERTER program in listing 11-2 illustrates how to call low-level DOC
subroutines. It digitizes an incoming analog signal (which appears on pin 1 of the
Ensoniq’s Molex connector) by reading DOC register $E2 again and again until a
32K buffer fills up or until ESC is pressed. (To play the sound back, you would
transfer the sample to DOC RAM and call FFStartSound.)

You can use a device such as the MDIdeas SuperSonic stereo card (with Digitizer
option) as the source of the analog signal to be digitized. The SuperSonic receives
its signal through an RCA phono connector, which you can connect to the output
line of a radio, tape recorder, record player, CD player, television, or a musical
instrument.

The CONVERTER program uses a sampling rate of approximately 1000 samples/
second, but it can be changed by adjusting the counter in a delay loop in the
DoSample subroutine. According to the Nyquist Sampling Theorem, the sampling
rate should be at least twice the frequency of the highest-frequency component of
the sound being recorded. If it is not, the sound will appear distorted when you
play it back.

The CONVERTER program uses the JSL patch technique for setting up the call
to the DOC read subroutine. When the subroutine is called, the DOC register
number is in X and m=1, as required.

NOTE SYNTHESIZER

The free-form synthesizer used by the Sound Manager is most useful for playing
back long sound patterns that have been previously digitized. It is not particularly
useful for playing musical notes or synthesizing the effect of musical instruments.

It is the Note Synthesizer (tool set 25) that you will use most often to create
musical melodies on the ¢s. It is capable of playing all standard musical notes using
the characteristics of any instrument you care to define. With a minimum of extra
effort, vou can use the Note Synthesizer to assist the application in playing back
sequences of notes in a song.

The general procedure for using the Note Synthesizer to play a pure note is quite
simple:

1. Load a waveform into DOC RAM (with WriteRamBlock)
2. Get a generator (with AllocGen)
3. Play the note (with NoteOn)

4. End the note (with NoteOff}

Note Synthesizer 407

Dithiculties arise when defining the characteristics of the instrument to be used to
play the note. This requires an understanding of terms such as ADSR envelope,
vibrato, pitchbend, and semitone. The process of defining an instrument will be
discussed later in this chapter.

Starting up the Note Synthesizer

The start-up function for the Note Synthesizer is NSStartup. Before calling it, vou

must call SoundStartup to start up the Sound Manager. This is necessary because

the Note Synthesizer uses Sound Manager functions to perform some of its chores.
Here is how to call NSStartup:

PushWord UpdateRate iEnvelope update/interrupt rate
PushFtr MySequencer iPointer to interrupt handler
_NSStartup

The UpdateRate variable defines an interrupt rate for the notes plaved by the Note
Synthesizer. This is the rate at which the ADSR (attack, decay, sustain, release)
envelope for the instrument selected to play the note is generated. (ADSR envelopes
and instruments art'rﬁescrihe(] below.) The UpdateRate variable s in units of 0.4
Hz and should normally range from 75 (30 Hz) to 500 (200 Hz). The higher the rate,
the better the note will sound, but the main application will be interrupted more
often and will appear to slow down while music is playing.

When a Note Synthesizer update interrupt occurs, the system interrupt handler
calls the user-defined MySequencer subroutine, This subroutine can keep track of
the number of times it has been called and turn notes on and off at the appropriate
times. For example, if the update rate is 30 Hz and a note is to play for one-half
second, MySequencer would wait for 15 interrupts before turning the note off (and,
in most cases, turning on the next note in the song).

Playing a Note

To play a note with the Note Synthesizer, you must start by using AllocGen to get
a generator with which vou can work:

PHA ispace for result
FushWord GenPriority igenerator priority
_AllocGen

FLA iPop generator number

The GenPriority parameter passed to AllocGen is a number from 1 to 128 and
represents a priority code for the generator. For most purposes, you can assign a
priority of 127 to all allocated generators.

The priority indicates the degree to which the generator will be “stolen” by
subsequent calls to AllocGen if all generators are in use. (Generators 0 to 13 may

408 Sound and Music

Figure 11-8. Waveforms for Different Musical Instruments

. .-'. ."0.‘. ; H-._..‘L. :5_..--_.%.I
i ,;'- l"=‘ e =_
VYOG |
i AN
k‘} Y B id
£ A
L'-._..." B ;’f ‘k"‘
Piano Bells Clarinets

be allocated; the Sound Manager and Note Synthesizer reserve one generator each.)
AllocGen first tries to allocate a generator that is not in use (priority = 0). If it
cannot find one, it steals one with the lowest priority that is less than or equal to
GenPriority. (A generator with a priority of 128 cannot be stolen, however.) AllocGen
returns an error if no generator gualifies.

If AllocGen does allocate a generator, it assigns-it a priority of GenPriority.

Once you have allocated a generator, vou must load a waveform for the generator
into memory. For simplicity, vou can just load a simple sinusoidal wave or a triangle-
shaped approximation. Keep in mind, however, that real musical instruments have
different waveforms, so you should use them for more realistic sound. The waveforms
for some common instruments are shown in figure 11-5.

To play the note, call NoteOn:

PushWord GenNum
PushWord Semitone
Pushlerd Volume

PushPtr Mylnstrument sPointer to instrument definition
_Hote 'n

igenerator number

;MIDI semitone (frequency)
sVelume

MIDI stands for Musical Instrument Digital Interface, an international standard for
digital musical devices. MIDI semitone codes range from 0 to 127, where middle
C is 60. Semitone codes for other notes can be deduced from the information in
table 11-4.

The Volume parameter also ranges from 0 to 127 and is roughly equivalent to
MIDI velocity (the speed at which a note is struck). Each group of 16 units of the
volume parameter corresponds to a 6-decibel change in volume.

The MylInstrument parameter is by far the most complex parameter. It points to
a parameter block that describes, in meticulous detail, changes to be made to the

Note Synthesizer 409

Table 11-4: MIDI Semitone Codes Used by the Note Synthesizer

Semitone Offset
Octave - Code Pitch a within Octave*

1 36 C +0
2 48 _ C# +1
3 60 D +2
4 72 D# +3
5 84 E +4
F +35
F# +6
G 7.
G# +8
, A +9

A# +10

B +11

*Add these codes to the semitone base code for the octave being used.

basic waveform when playing the note. By adjusting the instrument parameters,
vou can simulate the characteristics of any musical instrument.

The general form of an instrument definition is shown in table 11-5. An actual
example is shown in listing 11-3. It begins with the definition of an ADSR envelope
for the instrument. As shown in figure 11-9, ADSR stands for attack, decay, sustain,
and release, the four consecutive phases a waveform passes through when it is
played. The amplitude of the ADSR envelope at any given time represents the
maximum amplitude (volume) of the underlying waveform for the note; the waveform
is still oscillating at the proper frequency, but its maximum amplitude is being
modulated.

To explain the meaning of attack, decay, sustain, and release, it is best to consider
one particular instrument, say a piano. The slope of the attack stage is proportional
to how hard you strike the piano key; the harder you strike it, the faster the volume
reaches its maximum. Decay refers to the degradation in volume after the attack
maximum has been reached. Sustain refers to how the volume changes as you hold
the key down. For a piano, the sound is sustained for some time, but gradually

410 Sound and Music

Table 11-5: The Instrument Definition Data Structure

Field Name

Offset

ADSR_Envelope
ReleaseSegment
PriorityIncrement
PitchBendRange
VibratoDepth
VibratoSpeed
Spare
AWaveCount
BWaveCount
AWaveList
BWaveList

Figure 11-9. The ADSR Envelope for a Sound

500
518
519
81A
518
51C
31D
31E
31F
$20
$20 + 6 * AWaveCount

amplitude T

attack decay sustain
.’_p\-—Y.—MT -

relgase

4 .]

time —

fades away; for other types of instruments, such as an organ, there is little change
in volume during the sustain stage. The final stage is the release stage, which
corresponds to the complete release of the key. For most instruments, the volume
drops off rapidly during the release stage.

The meaning of each parameter in an instrument definition is discussed below.

Note Synthesizer 411

ADSR_Envelope. The ADSR_Envelope field is made up of eight 3-byte entries
that define the shape of the ADSR envelope at eight different stages:

* Stage 1: volume 1 (byte), increment 1 (word)
« Stage 2: volume 2 (byte), increment 2 (word)
* Stage 3: volume 3 (byte), increment 3 (word)
* Stage 4: volume 4 (byte), increment 4 (word)
* Stage 3: volume 5 (byte), increment 5 (word)
* Stage 6: volume 6 (byte), increment 6 (word)
* Stage 7: volume 7 (byte), increment 7 (word)

* Stage 8: volume 8 (byte), increment 8§ (word)

In each threesome, the first byte is a volume (0 to 127) and the following word is
an increment. For a given stage, the increment value indicates how fast the volume
is to change from what it was in the previous stage to what it is in the current stage.
That is, the increment sets the slope of the ADSR envelope for a particular time
interval.

The time needed to slope up (or down) to the volume of a particular stage can
be calculated from the following formula:

time = abs(last volume — new volume) * 256
increment * update rate

where abs means absolute value and the update rate is the one passed to NSStartup.

ReleaseSegment. The ReleaseSegment field of the instrument definition contains
the number (minus one) of the ADSR_Envelope stage to which the Note Synthesizer
goes when the note is released (a note is released when vou call NoteOff). In most
cases, the instrument will release to a zero volume in one stage, so the volume byte
for this stage will be 0.

Prioritylncrement. This field contains the number that will be subtracted from
the generator priority when the note reaches the sustain segment. If you allocate
all generators at the same priority, this will force older notes to be stolen first, which
is usually what you want to happen.

PitchBendRange. This field contains the number of MIDI semitones the pitch of

the waveform will be raised when the pitchwheel reaches 127, PitchBendRange can
be 1, 2, or 4. i

412 Sound and Music

VibratoDepth. This field contains the amplitude of a triangle-shaped wave that
modulates the main waveform for the note. It can range from 0 (no vibrato) to 127.

VibratoSpeed. This field controls the frequency of the vibrato modulation and can
range from 0 to 255. The exact frequency depends on the update rate passed to
NSStartup.

AWaceCount. AWaveCount is a byte containing the number of wave definitions
(1 to 255) in the AWaveList field for the first oscillator used by the generator.

BWaveCount. BWaveCount is a byte containing the number of wave definitions
(1 to 255) in the BWaveList field for the second oscillator used by the generator.

AWaveList and BWaveList. There are two wavelists, one for each oscillator in the

generator used to play a note. Using wavelists, you can assign different waveforms

to different semitone ranges, change the pitch slightly, and set the DOC operating

mode. All the waveforms must be loaded into DOC RAM before the note is played.
Each entry in a wavelist has the following format:

TopKey (byte) Semitone limit

WaveAddress (byte) DOC Address value
WaveSize (byte) DOC Waveform value
DOCMode (byte) DOC Oscillator Control value
RelPitch {word) Pitch tuning factor

TopKey. TopKey represents the highest MIDI semitone to which the waveform
described by the wavelist applies. The lowest applicable semitone is the TopKey
value for the previous wavelist entry plus 1. Wavelist entries must be in increasing
TopKey order, and the TopKey for the last entry must be 127 (the highest M1DI
semitone allowed).

WaveAddress. This value indicates the starting page of the waveform in the DOC
RAM area. The Note Synthesizer puts this value directly into the DOC Address
register.

WaveSize. This code represents the Address Table and Resolution for the DOC
oscillator, The Note Synthesizer stores this value in the DOC Waveform register.

DOCMode. This value is placed directly in the Oscillator Control register. As
mentioned earlier in this chapter, this register controls the output channel number,
oscillator interrupts, operating mode, and halt/play status. When using the Note
Synthesizer, you normally want the oscillator to be running in free-run mode in
channel #0 with no interrupts, so the DOCMode byte is $00. It is also common to

Note Synthesizer 413

have the first oscillator run in swap mode ($06) for the attack, so that it will swap
to the second oscillator operating in free-run maode for the rest of the note. In this
situation, the second oscillator initially has a DOCMode of $01 (free-run, but halted);
its halt bit is cleared automatically by the DOC when the swap takes place.

RelPitch. This number is used to change the pitch of a waveform in a minor way.
The low-order byte is in units of 1/256 semitone; the high-order byvte is a two's-
complement signed number representing whole semitones. RelPitch is normally set
to 0,

Turning off a Note

When it is time to turn off a note, call the NoteOH function. This forces the Note
Synthesizer to go directly to the release stage in the note’s ADSR envelope. For
most instruments, this causes the volume of the note to quickly decay to a zero
level. When this happens, no more sound is heard, the generator used for the note
is automatically deallocated, and its priority is set to 0.

Here is how to eall NoteOff:

Pushbord GenNum ;Generator number for the note
Pushlord Semitone :Semitone value for the note
_NoteOff

If you want to turn off all notes at once, use AllNotesOff. It requires no parameters,
The Note Synthesizer also has a function for explicitly deallocating a generator—
DeallocGen:

PushWord GenMum ;generator number
_DeallocGen

This function sets the priority of the generator to 0 and halts its two oscillators. You
should not need to use DeallocGen, because the Note Synthesizer calls it for you
automatically when the note volume goes to 0.

Shutting Down the Note Synthesizer

When you are finished with the Note Synthesizer, call NSShutDown (no parame-
ters). It automatically turns off all generators used by the Note Synthesizer, so there
is no need to call AllNotesOff or DeallocGen first.

PLAYING A SONG

The SONG program in listing 11-4 shows how to use the Note Synthesizer to play
the series of notes that make up a song. Notes are defined for two distinet musical
tracks, and the program combines these tracks to play the song. In the example,

414 Sound and Music

the same instrument and waveform is used for each track, but with a little extra
effort vou could assign a different instrument and waveform to each track.

Each track in the song is defined by a series of four-word note records, each of
which defines the pitch of a note, its volume and duration, and the time interval
between the start of the note and the start of the next note. (You can play several
notes at the same time in one track by specifying a 0 interval.) The end of the track
is marked by four consecutive 0 words, Here is the exact format of a note record:

+ MIDI semitone: 0 to 127
¢ MIDI volume: 0 to 127
« note duration: in units of 1/30 second

e note interval: in units of 1/30 second

Each unit of note duration or note interval is 1/30th of a second, because the update
rate passed to NSStartup is 30 Hz. If you use a different rate, you must change the
duration codes accordingly.

To add another musical track to the SONG program, first increase the value of
TrackMax by 1 and place a pointer to the track’s note table in the track table that
follows TrackMax. Finally, insert the note table for the track and terminate it with
four zero words. When vou reassemble the program, the new track will be played
with all the others.

The portion of the SONG program that does most of the work is the Sequencer
subroutine. It is called at the update rate (30 times per second) and is responsible
for keeping track of the status of all notes being played and for turning notes on and
off when necessary.

When Sequencer first gets control, it decrements the note interval counters for
each track; these counters were originally set equal to the value stored in the record
for the last note played in each track. (The program puts 1s in these counters when
it first starts up to force the first notes in each track to be played right away.) If a
counter becomes 0, it is time to play the next note in the track, so Sequencer calls
the NextNote subroutine to get the next note record from the list. It then turns the
note on by allocating a generator with AllocGen and then calling NoteOn. It also
adds 8 to the track’s note pointer so that it points to the next note record.

After Sequencer turns on any notes that are ready to be played, it decrements
the duration counters for all generators that are still playing notes. These counters
were initialized when the note was first turned on. If a counter becomes 0, it calls
NoteOff to release the note. The generator is automatically deallocated when the
volume goes to 0,

Playing a Song 415

REFERENCE SECTION
Table R11-1: The Major Functions in the Sound Manager Tool Set ($08)

Function Name

Function Stack
Number Parameters

Description of
Parameter

FFGeneratorStatus

FFSoundDoneStatus

FFSoundStatus
FFStartSound

FFStopSound
GetSoundVolume

GetTableAddress

ReadRamBlock

SetSoundMIRQV

SetSoundVolume

SetUserSoundIRQV

SoundShutDown

SoundStartup
WriteRamBlock

$11 result (W)
GenNum (W)
$14 result (W)
GenNum (W)
510 result (W)
SOE GenMode (W)
ParamBlock (L)
$0F GenMask (W)
$0C result (W)
GenNum (W)
S0B result (L)
50A DestPtr (L)
DOCStart (W)
Count (W)
512 Master[RQV (L)
50D VolSetting (W)
GenNum (W)
%13 result (L)
NewlRQV (L)
$03 [no parameters]
$02 DPAddr (W)
509 SourcePtr (L)

DOCStart (W)
Count (W)

416 Sound and Music

Generator status word
Generator number

0 = playing/$FFFF = stopped
Generator number

Generator status word
Generator (high), mode (low)
Ptr to parameter block
Generator mask

Volume setting

Generator number

Ptr to low-level DOC table
Ptr to destination address
Starting address in DOC RAM
Size of wave to read

Ptr to new sound IRQ handler
Volume level

Generator number

Old user IRQ handler

Ptr to new user IRQ handler

Address of 1 page in bank 0
Ptr to start of data
Starting address in DOC RAM

Size of wave to write

Table R11-2: Sound Manager Error Codes

Error

Code Description of Error Condition B
$0810 The system does not contain a DOC chip.

30811 The specified DOC address is invalid.

$0812 The Sound Manager has not been initialized.
$0813 The generator number is invalid.

$0814 The synthesizer mode is invalid.

50815 The generator is busy.

$0817 The master IRQ vector has not been assigned.
$0818 The Sound Manager has already been started up.

The Sound Manager can also return Memory Manager and ProDOS 16 error codes,

Table R11-3: The Major Functions in the Note Synthesizer Tool Set ($19)

Function Function Stack Description of
Name Number Parameters Parameter
AllNotesOff $0D [no parameters]
AllocGen 309 result (W) Generator number
allocated
GenPriority (W) Generator priority
DeallocGen S0A GenNum (W) Generator number
NoteOff $0C GenNum (W) Generator number
Semitone (W) MIDI semitone
NoteOn 308 GenNum (W) Generator number
Semitone (W) MIDI semitone
Volume (W) Volume

InstrumentPtr (L) Ptr to instrument definition

Reference Section 417

Function Function Stack Description of

Name Number Parameters Parameter

NSShutDown %03 [no parameters] -

NSStartup $02 UpdateRate (W) Update rate code
UserUpdate (L) Ptr to update handler

Table R11-4: Note Synthesizer Error Codes

Error

Code Description of Error Condition

$1901 The Note Synthesizer has already been initialized.
$1902 The Sound Manager has not been initialized.
$1921 No generators are available.

$1922 Invalid generator number.

%1923 The Note Svnthesizer has not been initialized.
51924 The generator is already being used.

Table R11-5: Useful Functions in the Miscellaneous Tool Set ($03)

Function Stack Description of
F unction Naimne Number fa_rqgr_tgre{'s___ Parameter
SysBeep $2C [no parameters|

418 Sound and Music

Listing 11-1: Creating Simple Waveforms

{a) Creating and loading a sine wave:

LoadSine ANOP

PushPtr WaveForm :Pointer to waveform
PushWord #$0000 ;Starting DOC address
PushWord #%100 ;Number of bytes
_WriteRamBlock

RTS

: This is a sine wave. The values were calculated from
: the formula Y = 127 » SIN(X & 2 » P1/256) + 128 where
1 PI = 3.14156.

WaveForm ANDP

DC I1'1EB.$31,134.137.140,144,14?,150,153,156.159,152,155.168,1?1,174'
DC]1'!7?,1?9.182.185.188,191.193,196,199,201,204.205,205.211,213.215'
Dc I!'218,220,222.224,225.228|230,232.2347235,237,239,240,241.243,244'
Dc 11'245.245.248,243,250,250.251,252.253,253,254.254.254,255,255.255‘
DC I1'255.255,255T255,254.254,254,253,253.252,251,250.250,249,243,245’
pc I1'E45,244,243,241.240.239.23?,235,234,232,230,228,225,224,222,220'
Dc 11'218,216,213,211.209.205,204,201.199,196.193.191,188,185.182,1?9'
Dc 11'1??.174*1?1,168.155,152‘159.156,153,15D.14?T144,140,137,134.131'
DC I1'128,1251122,!19.11BT112.109,106.103.100.97,94,91.88.85.82'

DC]1'79,??,74,?1,68.65,63.8015?,55,52,50.47,45,43.40'

DC 11'38,36,34,32,30,28,26,24,22,21,19,17,16,15,13,12!

pc 11'11,10,8,7,6,6,5,4,3,3,2,2,2,1,1,1!

pc I1'1,1,1,1,2,2,2,3,3,4,5,6,6,7,8,10'

Dc 11'11,12,13,15,16.17,19,21.22,24,25.23,30,32,34.36'

pc 11'38,40,43,45,47,50,52,55,57,60,63,65,68,71,74,77!

Dc [1*?9,82.85,88,91,94,B?,IDD,!D3,1DE,109,112.115,119,122,125'

{b) Creating and loading a triangle wave:

LoadTriang ANOP

SEP #3520 ;B8-bit accumulator

LONGA OFF

LDX #0

LDA #%40 istart of triangle
PutWave1 STA WaveForm,X

INC A imove up

INX

CPX #3580

BHE PutWavel

Reference Section 419

PutWave2 STA WaveForm, X

DEC A smove down
INX
CPX #3100
BNE PutkWave?2
REP #3820 ;16-bit accumulator
LONGA aFF
PushPtr WaveForm ;Pointer to waveform
Pushblord #30000 ;Starting DOC address
Fushlord #$100 iNumber of bytes
_WriteRamBlock
RTS

WaveForm DS 256

Listing 11-2: The CONVERTER Program

AR R N R R R ST T

* This program shows how to digitize an incoming *
* analog signal through the Ensoniq DOC. *

LA S A T Y R N T T ST e

KEEFP ANALOG
mMcopPy ANALOG.MAC

DereflLoc GEQU $00 sUsed for dereferencing handles
TablePtr GEQU $04 sPointer to low-level table
Sample GEQU $08 iPointer to start of buffer

Converter START
USING GlobalData

PHK
PLB iProgram bank = data bank
JSR StartUp ;Start up the tools

i Allocate a 32K buffer for the samples:

PHA iSpace for result {handle)
PHA

PushLong #$8000 iReserve 32K block
Pushlord MyID i1D tag for memery block
PushWord #$C00D iLocked, fixed

FushLong #$00 i [no meaningl

_MewHandle
PopLong Derefloc

420 Sound and Music

LDA
5TA
LDY
LDA
STA

[Derefloc] ;Convert handle to pointer
Sample

#2

{(DerefLoc],¥

Sample+2

; Get address of low-level subroutine table:

PHA jspace for result
PHA
_GetTableAddress :Get address

PoplLong TablePtr

-

Store the 3-byte address of the DOC read subroutine (first

; entry in the table) 1n the operand of the JSL tnstructien:

LDA
STA
LDY
LDA
STA

JSR

JMP

[TablePtrl
JSL_Pateh+1
#1
[TablePtrl,Y
JSL_Patch+2

DoSample :Start sampling

[insert code here to save sample to disk, etc.]

ShutDown sFinish up

: This subroutine samples the analog input line until
. $8000 samples have been taken or until ESC is pressed.
. The sample size 15 returned in the Y register.

DoSample ANOP

SEP
LONGA

LDY
GetSample PHY

LDX

#5520 18-bit accumulator
OFF
#0 sInttialize buffer pointer

;Save pointer

#3E2 ;Hnalog-lo-Digital register

: Mote: the address of the DOC read subroutine was stored in the
; three operand bytes of this JSL subroutine al the beginning of
T

the program:
JSL_Pateh JSL

PLY

§123456 ;Read the reglster

;Get pointer

Reference Section

421

STA [Samplel,¥ jSave the sample in buffer

INY ;Bump buffer pointer
CPY #$8000 3At 32K limit?
BEG Exit ;¥Yes, so branch

i Use a delay loop like this to adjust the sampling rate.
;i A value of 475 for X gives a rate of about 1000 samples/second.

LDX #475 ;Delay counter
Delay DEX
BNE Delay

i Check keyboard for ESC (see chapter 12}:

LDA $EOCO000 iCheck keyboard

BPL GetSample ;Branch if nothing there

STA $EOCO10 iClear keyboard strobe

CMP #%$9B8 sEsc?

BNE GetSample iNo, so getl next sample
Exit REP #3520 ;Back to 16-bit accumulater

LONGA oN

RTS

END

LR R O R
* Start up the standard tool sets +
LR e s N R N]
StartUp START

USING GlobalData

_TLStartup
_MTStartup

PHA
_MMStartup
PLA

STA My 1D

* Get one page in bank $00 for SoundStartup:

PHA ;Space for result (handle)
PHA

FPushLong #$100 iReserve one page
PushWord MylID ;1D tag for memory block
Pushlord #$%$C005 iLocked, aligned, fixed
PushLong #%00 ... in bank %00
_NewHandle

422 Sound and Music

; Dereference the handle:

PopLong DereflLoc

LDA [Derefloc]
PHA

_SoundStartup

RTS

s Shut down all the tool sets
: and leave the application:

ShutDown

QuitParms

GlobalData

My 1D

Listing 11-3:

ENTRY
_SoundShutDown

PushWerd MylD
_MMShutDown

_MTShutDown
_TLShutDown

_Quit QuitParms

DC 1410
DC [2'0!
END

DATA

DS 2
END

;Get direcl page address

;Push direct page address
;Start up the Sound Manager

jprogram 1D tag

An Example of an Instrument Definition

Instrument

ANOP

pC 11'127,0,127"
pc 11'120,20,1!'
pC [1'120,0,0°
D¢ [1'0,0,810!
pc I11'0,0,0"

pc 11'0,0,0'

pc 11'0,0,0°

pc 11'0,0,0°

pc L1113
DC 111321
DeC [1rar

;Sharp attack to max wvolume
;Slow decay

;:5ustain at same level
:Release to zero

;lunused stagel

;lunused stagel

;lunused stagel

;lunused stagel

;Release stage number
;Priority reduction at sustain
;Pitchbend

Reference Section 423

DC 11180

DC [1'807¢
DC 1110t
DC 11y
DC f B L

AlWavelist DC IR Bl
Dc I1'$00!

DeC I1'p!
pc I1'g?
DC [2vp?
BWaveli1st DC [R -
DC I1'801
DC 1110t
Dc [11r11
Dc [200

Listing 11-4: The SONG Program

iVibrato depth

iVibrato frequency

jlsparel

sNumber of entries in AWavelist
sNumber of entries in BWavelist
;TopKey

iStarts at page $00 in DOC RAM
iWaveform register: one page
iMode: swap to B, playing

iNo piteh change

iTopKey

iStarts at page $01 in DOC RAM
iMaveform register: one page
iMode: free-run, halted

iNo pitch change

LA R e S S e

* This program shows how to construct a simple
* tune using the Note Synthesizer. *
L R N S Y]

KEEP SONG
MCOPY SONG.MAC
NotePtr GEQU $0
Interval GEQU $20
Song START
USING GlobalData
USING TheNotes
USING Instrument
PHK
PLB
TDC
STa My DP
JSR StartUp
JSR Makeblave

iPointers to each note track
itime until next note begins

iProgram bank = data bank

iSave current direct page

;Load wave into DOC RAM area

i Gel the Note Synthesizer up and running:

SEI
PushWord #75

FushPtr Seguencer
_N55tartup

424 Sound and Music

1No interrupts until we're ready

130 Hz update rate
ilnterrupt handler

i Here is the main program loop:

KeyWait

PRINTLN 'Press any key to start the song (ESC to cancel):

PHA

PushlWerd #0 :0 = no echo
_ReadChar

PLA

AND #$7F ;Convert to ASCII
cCmP f31B +ESC pressed?

BEQ ShutDown i¥Yes, so bail out

i Initialize the pointers to the sound tables and fix
i things up so that the first note in each track is
; played right away:

DoTables

LDY #0

LDX #0

LDA TrackMax+2,X iTransfer track pointer to d.p.
STA NotePtr,X

LDA TrackMax+4, X

STA NotePtr+2,X

LDA 1

STA Interval , X i(Causes 1st note to be played)
INX iMove to next entry

INX

INX

INK

INY

CPY TrackMax ;Done all tracks?

BNE DoTables iNo, so branch

CLI iAllow synthesizer interrupts!
BRL KeyWait

i Shut down all the tool sets
i and leave the application:

ShutDown

_N55hutDown
_TextShutDown
_SoundShutDown

Reference Section 425

Pushlord MylD
_MMShutDown

_MTShutDown
_TLShutDown

_Quit QuitParms

QuitParms DC 140
jaln 120"
EMD

l‘."'*"lI.ﬂi‘lllll-'.lil'lllili'lilllililllllll**li!i'liliﬂll
* This subroutine gets control after a Note Synthesizer «
* interrupt. Interrupts occur 30 times/second. .
Illiluiillliiil!'lllidllllllllnIllilll*l#nflelllo*niiiliiu
Sequencer START

USING Instrument

USING GlobalData

USING TheMNotes

PHE
PHK
PLB ;Allow absolute addressing

PHD
LDA MyDP ;Switch to application's d.p.
TCD

i Check to see if it's time to play the next note:

LDX 0
DoTrack DEC Interval iReduce time to next note
BHE NextTrack jBranch if not time to play next note
PHY
JSR NextHote 1Get next note
PLX

NextTrack TDC

CLE

ADC #4 iKeep the d.p. in step with
TCD ; the current track.

INX

CPX TrackMax sDone all tracks?

BNE DoTrack 1Mo, so branch

426 Sound and Music

; Turn off

GenCheck

NextGen

; Get the next

NexiMHote

GetGen

all generators whose notes are done;

LDX #1332
LDA Duration,X
BEQ NextGen

DEC Duration,X
BHE NextGen

PHX

LDA Generator,X
PHA

LDA Semitone, X
PHA

_HNoteOff

PLX

DEX
DEX
BPL GenCheck

PLD
PLE
RTL

LDA [NotePtrl
BNE GetGen

RTS

PHA

PushWord #127
_AllocGen

PLA

PHA

PHA

ASL A

TAX

PLA

STA Generator, X
LDA [NotePtr]
STA Semitone, X
LDY #4

LDA [NotePtrl,Y
STA Duration,X

;Is this note playing?
;Mo, seo branch

:Reduce duration counter
;Branch if more to come

;Don't destroy bt

1Turn of f the note
;Restore X

:Move to next generator

;Restore direct page
;Restore data bank

note in the note table:

sGet next semitone
:Branch if note defined

;Space for result
;Generator priority
;Allocate a generator
;Get generator number
yikeep a copy on stack)
3(... and another)

;x2 for array position

;Store generator number

:Store note semitone

:Store note duration

Reference Section

427

LDY 1]
LDA [NotePtrl,Y
STH Interval 1Store time to next note

i Sound the note by calling NoteOn (the generator
i number is already on stack):

LDA [NotePtr]

PHA ;Semitone

LDY #2

LDA [HotePtrl,Y

PHA sVolume

PushPtr Instrument iInstrument

_Noteln iStart sounding the note

* Bump the pointer to the next note record:

CLC

LDA NotePtr

ADC B iAdd size of note record

STA NotePtr

LDA Interval iDelay before next note?

BEQ HextNote iNo, so get next note right now

RTS
Generator DS 142 iGenerators used by active notes
Semitone DS 1422 iSemitones used by active notes
Duration DS 142 iDurations of active notes

END

LA AR RS R R Rl R RN e

* This data segment defines the notes +
* for the tune we will play. s
LR R R E E E E E s R R R e,

TheNotes DATA

i These are the MIDI codes for semitones:

o5 EQuU 84 ;O0ctave 5 base
ob EQU 96 i0ctave B base

; Semitone offsets from the start of each octave:

C EQU 0
Cs EQU 1
D Eau 2
Ds Eau 3

428 Sound and Music

EQU
EQu
Eau
EaQu
EQu
EQu
EQU
EGQU

- = {00 ~0OW;moe

0
1

;This a table of pointers to each music track:

Tr

R

¥

Tr

v

ackMax DC [2v2) sNumber of tracks
oC 14'Trackl" ;Pointer to track 1
DC 14'Track2! ;Pointer to track 2

Here are the note definitions. Each is made up
of four words describing the semitone, wvolume,
duration, and the interwval until the next note.
A zero semitone marks the end of the list.

This is the definition for "Happy Birthday'":

ack1 ANDP
EQU 127 iMelody wvolume
DC ['e5+C,vl,4,4!
DC [105+C,v1,4,4"
DC ['o5+D,v1,8,8!"
DC 1'e5+C,v1,8,8"
DC I1'oG+F,v1,8,8"
DC I'oS5+E,v1,15,15"!
DC 1'o5+C,v1,4,4"'
DC ['eS5+C,v1,4,4!
DC I'eS5+D,v1,8,8!
DC l1'o5+C,v1,8,81
DC ['e5+G,v1,8,8!
DC ['o5+F,v1,15,15!
oc I'o5+C,vw1,4,4!
oc ['egS+C,v1 . 4,4!
oc I'e6+C,v1,8,8"
DC I'e5+A,v1,8,8!
DC ['a5+F,v1,8,B"
DC ['o5+E,v1,8,8"
DC 1'95+D,v1,15,15"
o ['o5+As , vl ,4,4"
Dc 1'oS+As,vwl,4,4"
Dc l'aS+A,v!,8,8"

Reference Section 429

DC 1'oS+F,v1,8,8!'

DC ['o5+G,v1,8,8!
DC [705+F ,vw1,15,15!
DC 1'0,0,0,0° ;End of note table

; Track2 contains the accompanying chords:

Track2 ANOP

ve EQU 127 ;Chord volume
Dc l'a5+F,0,8,8" i (do nothing)
DC ['o5+F,v2,24,0'
DC ['e5+A,v2,24,0!
Dc ['eB+C,v2,24,24"
DC 1'05+E,v2,23,0!
DC 1'o5+As,v2,23,0'
DC 1'o6+C,v2,23,23"
DC lta5+F,v2,16,0"
Dec ['oS+A,v2,16,0"
DC ['o6+C,v2,16,16!
] ['e5+E,v2,8,0"'
DC l'o5+As,v2,B,0!
DC I'o&6+C,v2,8,8"
DC ['oG+F,v2,23,0!'
DC 1'o5+A,v2,23,0!
DC l1'eB+C,v2,23,23"
Dc ['aS+F,v2,24,0"'
DC I1'o5+A,v2,24,0"'
DC 1'06+C,v2,24,24"
DC I'g5+E,v2,31,0"
pc 1'05+As,v2,31,0!
DC 1'o6+C,v2,31,31"
DC 1'o5+F,v2,16,0"'
DC ['"aS+A,v2,16,0"
DC ['o6+C,v2,16,16"
DC ['aS+E,v2,8,0!
DC 1'o5+As,ve2,B,0'
DC I'oG+C,v2,8,8!

430 Sound and Music

DC 1105+F,v2,15,0"

DC ['oG+A,v2,15,0"'

DC ['aG+C,v2,15,15"

DC 1to0,0,0,0°" :End of note table
END

IIII-I-IIIIII’II-lllllﬂlllf!I.‘III'*'I‘III!I*II!.
¢« This data defines the instrument which *
* is used to play the song. ’
Illililllll'h*ll-!I'IIGIII"‘QI'I"I"I'**"I"

Instrument DATA

de 11'$7F,0,64! ;Sharp attack

de i1'0,0,%02! ;Sustain with slow decay

dc i1'0,0,0° 3 (the other six :egments

de i11,0,0! ; are unused)

de 11'0,0,0!

dc i1'0,0,0!

de i1'0,0,0"

dc i1'0,0,0°¢

dc o) ;Segment number for release

de i1132! :Generator priority

dec 110! ;Pitch bend range

dc i1'0! ;Vibrato

de g ;Vibrato speed

dc i1r0* + [unused]

dc 111! :Mumber of waveforms for osc #1

dc i1 :Mumber of waveforms for osc #2
Wavel dc i1*127,0,0,0,0,0"
Wave2 dec i11127,0,0,0,0,0°

END

I'lilllfllﬂII'IIIIiIllih"l'il!'illlll*lill‘!Ililll..

s« Load a waveform into the first page of DOC RAM =

III'Il.lll.ll.‘lll"llll'l"*lil'llilill'illlll*'l‘ll‘l‘

Makelave START

; Transfer the waveform to the DOC RAM:

PushPtr Waveform ;Pointer te the wave
PushWord #%0000 ;S5tarting address in DOC RAM
PushWord #$100 ;Transfer one page
_WriteRamBlock ;Do the transfer!

RTS

Reference Section 431

i This is a sine wave. The values were calculated from
i the formula Y = B4*SIN(X = 2+P1/256) + 128 where
i PI = 3.14156. The zero baseline is given by the value $80.

WaveForm ANOP

DC 11'128,130,131,133,134,136,137,139,140,142,144,145,147,148,150,151"
DC 11'152,154,155,157,158,160,161,162,164,165,166,167,169,170,171,172!
DC 11'173,174,175,176,177,178,179,180,181,182,183,184,184,185,186,187"
DC 11'187,188,188,189,189,190,190,190,191,191,191,182,192,192,192,192!
DC 11'192,192,192,192,192,192,191,191,191,190,190,190,189,189, 188, 188"
DC 11'187,187,186,185,184,184,183,182,181,180,179,178,177,176,175,174!
DC 11'173,172,171,170,169,167,166,165,164,162,161,160,158,157,155,154"
DC 11'152,151,150,148,147,145,144,142,140,139,137,136,134,133,131,130"
DC 11'128,126,125,123,122,120,119,117,116,114,112,111,109,108,106,105"
DC 11'104,102,101,99,98,96,95,94,92,91,90,89,87,86,85,84!

pDc 11'83,82,81,80,79,78,77,76,75,74,73,72,72,71,70,691

DC 11'69,68,68,67,67,66,66,66,65,65,65,64,64,64,64,64"

DC 11'64,64,64,64,64,64,65,65,65,66,66,66,67,67,68,68"

pDC 11'69,69,70,71,72,72,73,74,75,76,77,78,79,80,81,82"

DC 11'83,84,85,86,87,89,90,91,92,94,95,96,98,99,101,102"

DC 11'104,105,106,108,109,111,112,114,116,117,119,120,122,123,125,1286"

END

LA SRR Y Y Y Y

* Start up the standard tool sets +

LA AR R R AR R RS EEE]
StartUp START
USING GlobalData

DeRefloc EQU $0 iUsed for dereferencing handle
_TLStartup
_MTStartup
PHA
_MMStartup
PLA
STA My 1D

PushPtr ToclTable
_LoadTools iLoad the Note Sequencer

* Gel one page in bank $00 for SoundStartup:

PHA iSpace for result (handle)
PHA

PushLong #$100 iReserve one page
Pushlord MyID i 1D tag for memory block

432 Sound and Music

PushWord #$CO0S
PushLong #$00
_MNewHandle

:+ Dereference the handle:

ToolTable

GlobalData

MyDP
My 1D

PLA

STA DereflLoc
PLA

STA DereflLoc+2
LDA [Derefloc]
PHA

SoundStartup

_TextStartup

RTS

DC 12!

Dc [2'25,%0000"
END

DATA

Ds 2

DS 2

END

;Attributes -- locked, aligned, fixed
3

... in bank %00

iGet direct page address
iPush direct page address

;Start up the Sound Manager

:One tool set to load
;Note Sequencer tool set

sprogram's direct page
jprogram ID tag

Reference Section 433

CHAPTER 12

Using the Text
Tool Set

The purpose of the Text Tool Set (tool set 12) is to give programs running in 65516
native mode anywhere in memory an easy way to direct character output or input
operations to an 1/O device in a slot or port. Doing this without the Text Tool Set
is awkward, because these types of /O devices must be accessed while in emulation
mode and while the data bank and direct page registers are set to 0. (These
restrictions stem from the need to maintain compatibility with Ile software and
hardware.) The functions in the Text Tool Set take care of saving the current mode
and registers, switching you to the proper ones for the I/O operation, and restoring
the original values on exit.

The three main uses of the Text Tool Set are to read character input from the
keyboard (without using the Event Manager), to display characters on the Gs’s 80-
column text screen (instead of the super high-resolution sereen used by QuickDraw
II), and to send data to a printer. Although these uses will be emphasized in this
chapter, the Text Tool Set is general enough to work with any character device in
any slot or port, or with custom RAM-based /O drivers.

The start-up and shut-down functions for the Text Tool Set are TextStartup and
TextShutDown. Neither one requires parameters or returns results.

LOGICAL DEVICES AND MASKS
The functions in the Text Tool Set deal with three logical I/'O devices:

= An input device
* An output device
s An error-output device
The error-output device is the device to which an application can send error mes-

sages or status reports without interfering with what the primary output device
receives.

435

You can assign each logical device to any slot or port on the Gs that interfaces
with a character-based 1/0 device. In a typical hardware configuration, the choices
for output devices are a printer in port #1, a modem in port #2, and an 80-column
video screen in port #3. The input device is usually the keyboard (it is supported
through the video screen port #3) or the modem.in port #2. The default device
assignment for all three devices is port #3.

Device Driver Types

You can assign a specific type of device driver to each of the three logical devices
with Text Tool Set functions. The three choices are:

= BASIC driver (driver type code 0)
* Pascal 1.1 driver (driver tyvpe code 1)

* RAM-based driver (driver type code 2)

A BASIC driver is one which adheres to Apple’s Applesoft protocol for initialization,
input, and output. According to this protocol, the entry points for the driver must
be as follows:

* 8Cn00 (initialization)
» $Cn05 (input; character returned in accumulator)

+ 5Cn07 (output; character in accumulator)

where n is the port (or slot) number. The Gs’s two serial ports and the 80-column
video port support this protocol.

A Pascal 1.1 driver uses a different protocol, first developed for the Apple UCSD
Pascal operating system. Such drivers contain a look-up table at $Cn0D to $Cnl3
that contains the low-order bytes of the addresses of the subroutines for handling
initialization, input, output, status, device control, and device interrupts. The high-
order bytes are always $Cn. Any driver with a value of $38 at $Cn05 and a value of
$18 at location 3Cn07 supports the Pascal 1.1 protocol. This includes the serial ports
and video port on the Gs.

You can also use your own RAM-based drivers if vou wish. Such drivers must
support five fundamental subroutines: initialization, input, output, status, and con-
trol. The addresses of these subroutines must appear in a table at the beginning of
the driver. Each address is a 3-byte absolute address (low-order bytes first, as usual).

The Gs calls RAM-based driver entry points with a JSL instruction while in full
native mode, so driver subroutines must end with an RTL instruction. Character
transfers between the tool function and the driver use the low-order 8 bits of the
accumulator.

436 Using the Text Tool Set

Because the s internal character 1/0 ports support both the BASIC and Pascal
protocols, you can assign a driver type code of 0 or 1 to the logical devices. The
default driver type is BASIC, although the default is only set up when ProDOS 16
first starts up. There is no way for an application to tell what the driver type will
be when it gets control, so the application must always explicitly set the driver type
using the techniques described below.

Data Masks

When handling /O operations involving ASClI-encoded text. it is important to set
the high-order bit (bit 7) properly. The ASCII standard does not use this bit, so
many peripheral devices expect it to be 0. Most printers, for example, will want
the high bit off unless you are trving to print special symbols that are assigned to
codes above $7F. The Gs BASIC 80-column text screen driver. on the other hand,
insists on receiving characters with the high-order bit set. and keyboard input
subroutines on Apple 11 computers traditionally return characters with the high-
order bit set.

The Text Tool Set always manipulates the bits in a byte you send or receive by
logically ANDing the byte with an AND mask and then logically ORing the result
with an OR mask (unless you are using a RAM-based driver). There are AND and
OR masks for each of the three logical devices.

On initialization, the AND masks for the input, output, and error-output devices
are set to $FF and the OR masks are set to $80. This forces the high-order bit of
incoming and outgoing data to 1 and is the format expected by BASIC, the default
driver type.

When sending data to a printer, you usually want to clear the high-order bit of
outgoing data to 0. To do this, change the output AND mask to $STF and the OR
mask to $00 with the SetOutGlobals function:

PushlWord #$7F 1 The new AND mask
PushlWord #3800 iThe new OR mask
_SetOutGlobals i{or Setln, SetErr)

(Use SetInGlobals and SetErrGlobals for the other two logical devices.)

When using an ImageWriter 11 printer, the state of the high-order bit is usually
unimportant, because the ImageWriter I normally forces the high-order bit of
incoming data to 0. If, however, you specifically enable recognition of this bit (with
a special printer command: $1B $5A $00 $20). perhaps to allow printing of
MouseText icons that have codes from $C0 to $DF, you do not want the high-order
bit to be altered. In this situation, you would change the masks to $FF (AND) and
$00 (OR) and use an AND #S7F instruction to specifically clear the high-order bit
of a text character before printing it.

To determine the active AND and OR masks, use the GetlnGlobals (input device),
GetOutGlobals (output device), and GetErrGlobals {error output device) functions:

Logical Devices and Masks 437

PHA ;space for AND mask

PHA ispace for OR mask
_GetOutGlobals i(or Getln, GetErr)
PLA iPop the DR mask (low byte)
PLX iPop the AND mask (low byte)

You might use these functions to save the existing masks so that you can restore
them when you exit your program.

CHANGING ACTIVE DEVICES

Before you begin performing character I/O operations, you must select your three
active devices, initialize them, and select appropriate AND and OR masks. To select
a device, use the SetInputDevice, SetOutputDevice, and SetErrorDevice functions.
Each requires two parameters: a device-type code word and a long word containing
the port or slot number of the device or the address of its RAM-based driver.

For example, here is how to select the printer attached to port #1 as the active
output device:

FushWord #0 30 = BASIC driver type
FushLong #1 jport 1
-SetOutputDevice

The first parameter pushed on the stack is the driver type code (use 0 for a BASIC
driver); the second is the port number. If you were using a RAM-based driver with
the printer, the second parameter would be the address of its subroutine address
table.

If you need to know what the currently active device is, use the GetInputDevice,
GetOutputDevice, and GetErrorDevice functions:

PHA ;Space for device type

PHA iSpace for slot number (long)
PHA

_GetOutputDevice j(or Getlnput, GetError)
Puchng DquutPort ;Pop result

Poplord DeviceType ;Pop result

These functions each return a device type code (word) and a slot number or a pointer
to a RAM-based driver (long word).

Initialization
Once you have assigned an active device for input, output, or error output, be sure
to initialize it with InitTextDev. If you do not do so, it probably will not work

properly. To use InitTextDev, pass it a word describing which device you wish to
initialize:

438 Using the Text Tool Set

PushWord TheDevice ;Device to initialize
_InitTextDev

The permitted values for TheDevice are 0 (input device), 1 (output device), and 2
(error-output device).
The effect of initialization varies from device to device. When you initialize the
port #3 output device (the video screen) for output, for example, the screen clears.
The subroutines shown in listing 12-1 illustrate how you might enable video port
#3 for output, a printer in port #1 for output, and the keyboard for input.

SENDING CHARACTERS TO THE OUTPUT DEVICE

There are five different ways vou can send a character, or a group of characters, to
the standard output device. The method you will use depends on how the textual
information is arranged in memory.

The five techniques are summarized below:

WriteChar Send a single character

WriteLine Send a sequence of characters that is preceded by a length byte;
then send a Carriage Return code

WriteString Send a sequence of characters that is preceded by a length byte

TextWriteBlock Send a specified sequence of characters

WriteCString Send a sequence of characters that is terminated by a $00 byte

(Similar functions exist for the error-output device: ErrWriteChar, ErrWriteLine,
ErrWriteString, ErrWriteBlock, and ErrWriteCString.)

All these methods process outgoing characters by first ANDing them with the
AND mask and then ORing them with the OR mask.

Single characters are best handled by WriteChar:

PushWord #$008D ;Push with character in low byte
_WriteChar

To send a group of characters, you could make multiple calls to WriteChar, but this
is slow and inefficient. If the text is in Pascal string format (that is, if it is preceded
by a length byte), use WriteString instead:

PushPtr MyString ;Pointer to string
_WriteString
RTS

MyString STR 'This is a string' ;Text of string

Use WriteLine in the same way if you want a carriage return code sent after the
string is sent.

Sending Characters to the Output Device 439

If the text is in C-string format (that is, if it is followed by a zero byte, with no
length byte). use WriteCString instead of WriteString. There is no C equivalent to
WriteLine, however,

Displaving text strings is such a common event that it is convenient to use macros
to handle it. The PRINT macro in listing 12-2 sends a string specified in its argument
to the output device. In a program, invoke PRINT by placing the string in single
quote marks after the macro name:

PRINT 'Print this!

If the string includes a single quote mark as part of the string, specify two single
quote marks in a row.

The PRINTLN macro, also shown in listing 12-2, is similar to PRINT but it uses
WriteLine instead of WriteString, As a result, it sends a carriage return code after
the specified text string.

To send any sequence of characters inside a large block of text, use Text-
WriteBlock:

PushPtr TheText ;Pointer to start of text block
PushWord Offset ;Character to begin with
PushWord Count sHumber of characters to send

_TextlWriteBlock

TextWriteBlock sends the "Count” characters beginning at a position “Offset” bytes
from the start of the text block pointed to by TheText.

READING CHARACTERS FROM THE INPUT DEVICE

There are three basic character reading functions in the Text tool set: ReadChar,
ReadLine, and TextReadBlock. The one vou will use most often is ReadChar,
because it grabs one character at a time from the keyboard (assuming port #3 is
the input port), which is how most programs prefer dealing with keyboard input.

Here is how to use it:

PHA jspace for result
PushlWord Echoflag 31 = echo, 0 = don't echo
_ReadChar

FLA iPop character (low byte)

The EchoFlag indicates whether you want to echo incoming data to the output
device. In most situations, you will set it to 1 to enable echoing.

ReadLine keeps reading characters until it receives an end-of-line (EOL) char-
acter, which is usually a carriage return code ($8D), or until a specified number of
characters have been received. On exit, it returns the number of characters received.
Here is how to call ReadLine:

440 Using the Text Tool Set

PHA ;jspace for result

PushPtr InputBuffer ;pointer to input buffer
PushWord MaxCaunt ;size of buffer

PushWord #%8D :EOL character

PushWord EchoFlag 11 = echo, 0 = don't echo
_ReadLine

PLA ;Pop character count

InputBuffer is the area of memory in which the incoming characters are stored.

MaxCount is the maximum line length, which must be less than the buffer size.
The last character-reading function is TextReadBlock. With it, you can read in a

group of characters and place them at a specified location inside a text buffer:

PushPtr TextArea :Pointer to start of text area
PushWord Offset :0ffset to start of input bleck
PushWord Count iNumber of characters to read
PushWerd EchoFlag ;1 = echo, 0 = don't echo
_TextReadBlock

The problem with using TextReadBlock is that it does not exit until it receives
Count characters. ReadLine, on the other hand, always exits when it receives the
EOL character.

KEYBOARD INPUT

One function the Text Tool Set cannot perform is to check whether or not a key has
been entered from the keyboard. You will want to do this, for example, if you design
a program loop which is to continue looping until the user presses a key. You cannot
use ReadChar because it waits until a key has been pressed before returning control
to the application. One solution is to access the keyboard 1/O locations directly. (it
the Event Manager is active, you can keep looping until GetNextEvent or Task-
Master indicates that a key-down event occurred.)
The two main keyboard 1/0 locations are as follows:

» SE0C000 keyboard strobe (bit 7) + data
= SE0CO010 clear keyboard strobe

When you are accessing these locations (or any other 1/O locations for that matter),
the m status flag must be set to 1 so that read or write operations affect the one-
byte 1/O location only. This is very important.

To determine whether or not a keyv has been pressed, check the high-order bit
of $E0C000 (the keyboard strobe bit). If it is 1, a key has been pressed and the
lower seven bits of SEOC000 contain the key's ASCII character code. To clear the
keyboard strobe so that the next read of $E0C000 will not return the same keveode,
access the SE0C010 I/O location.

Keyboard Input 441

Here is a short subroutine you could call to check the status of the keyboard:

Checkkbd SEP #3520 ;8-bit accumulator
LONGA OFF

LDA $EQCODOD iCheck keyboard
BPL KbdExit sBranch if nothing there
STA $EOCO010 ;Clear strobe

KbdExit REP #%20 ;16-bit accumulator
LONGA ON
RTS

If a key has been pressed, the negative flag is set to 1 and the character code is
returned in the accumulator. If no key has been pressed, the negative flag is cleared
to 0.

You must be careful while accessing keyboard /O locations when kevboard
interrupts are enabled, because all keypresses will be processed by an interrupt
handler before you have a chance to read $E0C000 to determine whether or not a
key has been pressed. (Remember, keyboard interrupts are automatically enabled
if the Event Manager is in use.) This is a particularly important consideration when
developing desk accessories because they may be activated at any time from any
application,

You can check whether keyboard interrupts are enabled by calling the Get-
IRQEnable function. in the Miscellaneous tool set:

PHA ispace for result
_GetIRGEnable
PLA ;1Get status word

If keyboard interrupts are enabled, bit 7 of the status word result will be set to 1.

When interrupts are enabled, you must first disable kevboard interrupts with
IntSource, another function in the Miscellaneous tool set. Here is how to disable
them:

FushWord #1 ;1 = disable keyboard interrupts
_IntSource

Later in the program vou can re-enable keyboard interrupts by passing a $00
parameter to IntSource, but only do this if interrupts were enabled in the first
place.

442 Using the Text Tool Set

VIDEO OUTPUT

Applications using the 80-column text screen cannot take advantage of tool sets like
the Window Manager, Menu Manager, and Dialog Manager because these tool sets
work with the super high-resolution screen only. Thus, you have to do a lot more
work if you wish to follow desktop interface guidelines. Nevertheless, text-based
applications are popular alternatives to similar graphics-based ones, because screen
operations such as scrolling and updating take place more quickly.

The drivers for most intelligent output devices support sets of commands you
can use to control the way the devices handle subsequent characters. In most cases,
a command is either a control character (a character with an ASCII code from 0 to
31) or a control character followed by a series of characters in a certain order.

The driver for the 80-column column text screen has commands that (with one
exception) are single control characters. You can use these commands to perform
such useful actions as screen clearing; moving the cursor position up, down, left, or
right; or highlighting subsequent characters. The commands supported by the
BASIC and Pascal drivers for the 80-column text screen are summarized in table
12-1.

Notice that the ASCII codes given in table 12-1 have the high bit set because
the 80-column video driver expects characters in this format. If the output OR mask
is $80 (the usual case), you can also send codes with the high bit off.

Also notice that for the Pascal driver, the CR (carriage return) code does not
move the cursor to the next line as it does when the BASIC driver is being used.
You must follow the CR with LF (line feed) to move the cursor down one line.

Character Display

Tahle 12-2 shows which characters appear on the text screen when you send ASCII
codes from $A0 to $FF to the 80-column video driver. These characters are usually
displayed in normal video (white characters on a black background) but this mode
can be inverted by sending a $8F (INVERSE) code to the driver first. To return to
normal video, send a $8E (NORMAL) code.

MouseText

MouseText is a group of thirty-two icons representing such objects as apples, arrows,
checkmarks, a file folder, scroll bar arrows, and shading patterns. You can use them
to add a little spice to vour screen displays.

Each MouseText icon corresponds to a standard keyboard character, as shown in
table 12-2. To display a MouseText character, first enable the driver’s handling of
MouseText by sending a $9B code (MTXT_ON) and turn on inverse video by sending
a $8F code (INVERSE). Then send the code for the character corresponding to the

Video Output 443

Table 12-1:

Control Commands Supported by the 80-Column Screen Driver

ASCII Symbolic

Code Name Action

$85 CURSOROFF Do not display a cursor

$86 CURSORON Display a cursor

$87 BEEP Sound a tone; volume, pitch set by Control Panel

$88 BACKSPACE Move the cursor left one position

$5A LF Line feed: move the cursor down one line

388 CLREOP Clear the screen from the current cursor position to
the end of the screen

$8C CLRSCREEN Clear the screen; move the cursor to the top left-
hand corner

$8D CR Carriage return; for BASIC, move the cursor to the
left side of the next line; for Pascal, move the
cursar to the left side of the current line (follow CR
with LF to move the cursor down one line)

38E NORMAL Enable the normal mode for text display

$8F INVERSE Enable the inverse mode for text display

$91 SET_40COL Enable the 40-column screen display

$92 SET_S0COL Enable the 80-column screen display

593 PAUSE Stop receiving characters until a key is pressed

895 FIRM_OFF Turn off the 80-column display and firmware

$96 SCROLLD Scroll the display down one line; leave the cursor at
the same position

$97 SCROLLU Scroll the display up one line; leave the cursor at
the same position

$98 MTXT_OFF Show inverse upper-case characters instead of
MouseText characters

$99 HOME Move the cursor to the home position (the
top left-hand corner of the screen)

$9A CLRLINE Clear the entire line on which the cursor is
positioned

9B MTXT_ON Show MouseText characters instead of inverse
upper-case characters

444 Using the Text Tool Set

Table 12-1: Continued

ASCII Symbolic

Code Name Action -

$9C MOVERIGHT Move the cursor one position to the right, moving
to the next line if necessary

39D CLREOL Clear the screen from the current cursor position to
the end of the line

39E SET_CURS For the BASIC driver only: Change the cursor
character to the character which follows

S9E GOTOXY For the Pascal driver only: Move the cursor to the

position indicated by the two bytes that follow; the
first byte is the horizontal position plus 32; the
second is the vertical position plus 32

$9F MOVEUP Move the cursor up one line (in the same column);
do not move if the cursor is in the top line

MouseText icon. Code $CI (A), for example, represents the Open-Apple icon. If
you want the driver to display inverse characters instead of icons, send code $98
(MTXT_OFF) to disable the conversion to MouseText icons.

These are the MouseText symbols and their corresponding characters (they cor-
respond to the codes from $CO to SDF):

MouseText— [« EvAREC] N[ldme
normal ——@ABCDEFGHIJKLMNDO

MouseText— F¥[ALPERECR] [*[—F=0]

normal —— PQRSTUVYXYZI[\] ©- =

Cursors

A cursor marks the position on the screen at which the next displayable character
you send to the video driver will appear. It is normally a solid white box, formed
by displaying an inverse space character.

If vou are using the BASIC video driver, you can change the cursor to any other
character by sending a $9E (SET_CURS) command to the video driver, followed by

Video Output 445

Table 12-2: Symbols for the Displavable ASCII Character Codes

ASCl ASClI ASClI

Code Symbol | Code Symbol Code Symbol
A0 [space] 5C0 (@ SEOD +
S5A1 ! 5Cl1 SE1 a
5A2 v 5C2 B SE2 b
$5A3 # $C3 C SE3 c
5A4 b ‘ $C4 D SE4 d
$A5 % $C5 $E5 e
$AB & ‘ $C6 F $E6 [
$A7 ' I Tor G $E7 g
SAS8 { $C8H H SES h
SAY) $C9 | SE9 i
SAA * $CA] SEA j
SAB + 5CB K S5EB k
$AC : $CC L SEC |
SAD - | $CD M SED m
$AE . SCE N [SEE n
5AF / 3CF 0 SEF 0
$B0O 0 $D0 E $F0

$B1 1 $D1 Q sF1

$B2 2 $D2 R §F2 T
5B3 3 $D3 S SF3 s
5B4 4 $D4 T 5F4 t
$B5 3 D5 U SF5 u
586 6 £D6 \ 3F6 v
SBY 7 sD7 W | $F7 w
$BS 8 $D8 X | §FS X

446 Using the Text Tool Set

Table 12-2: Continued

ASCHI ASCIHI ASCIH

Code Symbol Code Symbol Code Symbol
$B9 9 $D9 Y | $F9 v
$BA - $DA £ i SFA z
$BB ; $DB [SFB {
$BC < $DC X $FC |
$BD = $DD] $FD }
$BE = $DE - SFE ~
$BF 7 SDF - $FF [rubout]

the code for the new character. There are also commands for turning the cursor on
and off: use $86 (CURSORON) to turn it on, and $85 (CURSOROFF) to turn it off.

If you are using the Pascal driver, you can position the cursor by sending a $9E
code (GOTOXY) followed by bytes representing the horizontal and vertical positions.
These positions are offset from their actual positions by 32 so that position (2,4) is
represented by (34,36), for example

The BASIC screen driver does not support a cursor-positioning command. To
serve this purpose, vou will have to call a subroutine like the one in listing 12-3.
On entry to the subroutine, the horizontal position must be in X and the vertical
position in Y.

To understand how this subroutine works, consider that the cs BASIC 80-column
video driver keeps track of the current cursor position in three locations in page
zero and page five of bank $00:

* CH (524) horizontal cursor position (0 to 79)

« OURCH ($57B) duplicate of horizontal cursor position

« CV ($25) vertical cursor position (0 to 23)
To change the cursor position, you must place the new horizontal position in both
CH and OURCH and the new vertical position in CV. (The position is automatically
updated as vou send characters to the screen.) There is a complication that arises

when CV is changed, however. The BASIC driver continues to use the old CV value
until the eursor actually moves to another line. To force an immediate repositioning,

Video Output 447

Table 12-3: The 80-Column Text Screen Parameters for Windowing and Cursor

Control
Bank $00 Symbalic
Address Name Description
%20 WNDLFT Left column of window (0 to 79)
521 WNDWDTH Width of window (1 to 80)
$22 WNDTOP Top row of window (0 to 23)
$23 WNDBTM Bottom row of window plus one (1 to 24)
524 CH Horizontal cursor position (0 to 79)
525 Cv Vertical cursor position (0 to 23)
$57B OURCH Horizontal cursor position (0 to 79)

NOTE: WNDWDTH must not exceed 80 minus the value of WNDLFT.

you must place the desired value minus 1 in CV and then send a carriage return
code to the output device. This is exactly what the GOTOXY subroutine does,

The GOTOXY subroutine also shows how to force long addressing (by putting a
> in front of the label for an address) so that you do not have to change the direct
page before writing to CH or CV. It also temporarily switches to an 8-bit accumulator
so that when you store the accumulator, the next location in memory is not over-
written.

Window Dimensions

The 80-column BASIC video driver is normally able to display characters anywhere
on the screen. You can, however, tell it to confine its operations to any rectangular
window within the screen by redefining four window boundary parameters located
in page zero of bank 800, These parameters are described in table 12-3.

The usual values for the parameters in table 12-3 are:

WNDLFT 0 (left edge is column 0)
WNDWDTH 80 (screen width is 80 columns)
WNDTOP 0 (top line is line 0)
WNDBTM 24 (bottom line + 1 is line 24)

448 Using the Text Tool Set

As when changing CH or CV, you must switch to an 8-bit accumulator before storing
a number to any of the window parameter locations.

One parameter you must handle carefully is WNDWDTH. It must not exceed
the difference between 80 (the maximum window width) and WNDLFT (the left
edge). Keep this in mind whenever you change WNDLFT.,

Note that the window dimensioning techniques do not work when the Pascal
video driver is being used. They only work for the BASIC driver.

PRINTER OUTPUT

Printer drivers also support a variety of commands, mostly for setting formatting
parameters that affect the appearance of printer output but also for setting up the
communications link with the printer. The major commands supported by the drivers
for the built-in serial ports on the Gs are summarized in table 12-4. (Driver com-
mands more appropriate to modem interaction are not given in this table.) To use
a command, you begin by sending a Control-I code (ASCII $09) to the driver. You
can change this attention code to another control character with a Control-1 Control-
x sequence, where “Control-x" represents the new attention code.

Default settings for most of the printer parameters can be set with the Printer
Port command in the Control Panel desk accessory.

The drivers for the Gs’s internal serial ports (which can also be used with modems
and other serial devices) are not as flexible as some found in many non-Apple printer
interfaces. Such interfaces often support several commands that let you print the
contents of the text or graphics screens in many different formats and sizes with a
few simple commands. Without these commands, an application programmer must
write his own routines.

Keep in mind that the printer itself may support commands that the printer
interface does not. For example, to enable special printing modes, such as boldfacing
or underlining, normally you send commands directly to the printer (through the
printer driver, of course). If the command conflicts with a driver command, you
may have to first send a command to the driver that tells it to ignore control
character interpretation; for the Gs serial port, this is the Z command. If you do
this, you can restore control character interpretation by calling the InitTextDev
function.

THE TEXT TOOL SET IN ACTION

The program in listing 12-4 shows how to implement many of the techniques
described in this chapter. In particular, it shows how to use the PRINT and
PRINTLN macros, how to enable and display MouseText characters, how to position
the screen cursor, and how to turn on the printer.

Printer Qutput 449

Table 12—4:

Control Commands Supported by the Driver for the Gs Serial
Ports. For a Printer Port, Commands Must Be Preceded by
Character $89 (Control-1).

Set the number of data bits and stop bits.

n=0 8 data + 1 stop n=4 8 data + 2 stop
n=1 7 data + 1 stop n=5 7 data + 2 stop
n=2 6 data + 1 stop n=6 6 data + 2 stop
n=3 5 data + 1 stop n=7 5 data + 2 stop

Enable (CE) or disable (CD) line formatting. When enabled, the
Gs inserts a carriage return at the end of a line (the length is set

Enable (AE) or disable (AD) proper operation of the Applesoft

Command

String _Action

nB Set the serial baud rate.
n=0 default n=8 1200 baud
n=1 30 baud n=9 1800 baud
n=2 75 baud n=10 2400 baud
n=3 110 baud n=11 3600 baud
n=4 135 baud n=12 4800 baud
n=5 150 band n=13 7200 baud
n=6 300 baud n=14 9600 baud
n=7 600 baud n=15 19200 baud

nD

nP Set the parity.
n=0 no paritv bit n=2 no parity bit
n=1 odd parity n=3 even parity

nN Set the line length to n.

CE

CD
by the nN command).

AE

AD

BASIC TAB commands. When enabled, the line length is forced
to the video screen width.

450 Using the Text Tool Set

Table 12-4: Continued

Command

String Action - i)

BE Enable (BE) or disable (BD) the buffering of incoming and

BD outgoing characters. The buffers are each 2048 bytes in size.
Characters are sent from the output buffer in response to an
interrupt indicating that the peripheral device is ready to receive
a character.

XE Enable (XE) or disable (XD) the XON/XOFF software handshake

XD protocol. When enabled, and the firmware receives an XOFF
character (ASCII $93), characters are not transmitted until an
XON character (ASCII $91) is received. Some printers use this
technique for flow control.

LE Enable (LE) or disable (LD) the sending of a line feed character

LD (ASCII $8A) after a carriage return character (ASCIL $8D).
Enable this feature if your printer seems to print everything on
one line; disable it if the printer double-spaces all output.

R Reset the serial port. This restores the default parameter settings
set in the Control Panel.

Z Zap control character interpretation. After this command, the

firmware ignores character sequences which would normally be
interpreted as commands.

REFERENCE SECTION
Table R12-1: The Major Funetions in the Text Tool Set ($0C)

Function Stack Description of
Function Name Number Parameters Parameter .
ErrWriteBlock S1F TextPtr (L) Ptr to block of text
Offset (W) Offset to first character
Count (W) Number of characters

Reference Section 451

Function Stack Description of
Function Name Number Parameters Parameter
ErrWriteChar 519 Char (W) ASCII character to
write
ErrWriteCString $21 CStringPtr (L) Ptr to C-style text
string
ErrWriteLine 51B StringPtr (L) Ptr to text string
ErrWriteString 51D StringPtr (L) Ptr to text string
GetErrorDevice $14 result (W) Driver type code
result (L) Output slot (or vector)
GetErrClobals S0E result (W) Current error AND
mask
result (W) Current error OR
mask
GetInGlobals $0C result (W) Current input AND
mask
result (W) Current input OR
mask
GetInputDevice $12 result (W) Device type code
result (L) Output slot (or vector)
GetOutGlobals 0D result (W) Current output AND
mask
result (W) Current output OR
GetOutputDevice 813 result (W) Driver type code
result (L) Output slot (or vector)
InitTextDev 515 DeviceNum (W) Device number
ReadChar $22 result (W) Inputted character

452 Using the Text Tool Set

EchoFlag (W)

code

1 = echo/0 = don't
echo

Function Stack Description of
Function Name Number Parameters Parameter
ReadLine $24 result (W) Character count
BufferPtr (L) Ptr to input buffer
MaxCount (W) Size of buffer
EOLChar (W) End-of-line character
EchoFlag (W) 1 = echo/0 = don't
echo
SetErrorDevice 511 DeviceType (W) Driver type code
SlotOrAddr (L) Error output slot (or
address)
SetErrGlobals S0B ANDMask (W) Error output AND
mask
ORMask (W) Error output OR mask
SetInGlobals $09 ANDMask (W) Input AND mask
ORMask (W) Input OR mask
SetInputDevice S0F DeviceType (W) Device type code
SlotOrAddr (L) Input slot (or address)
SetOutGlobals $0A ANDMask (W) Output AND mask
ORMask (W) Output OR mask
SetOutputDevice $10 DeviceType (W) Device type code
SlotOrAddr (L) Output slot (or
address)
TextReadBlock $23 BlockPtr (L) Ptr to start of text

Offset (W)

Count (W)

EchoFlag (W)

block

Offset to starting
position

Number of characters
to read

1 = echo/0 = don't
echo

Reference Section 453

Function Stack Description of
Function Name Number Parameters Parameter
TextShut[it;an 503 [no pa::a—n:eters]
TextStartup $02 [no parameters]
TextWriteBlock $1E TextPtr (L) Ptr to block of text
Offset (W) Offset to first character
Count (W) Number of characters
WriteChar 318 Char (W) ASCII character to
write
WriteCString $20 CStringPtr (L) Ptr to C-style text
string
WriteLine $1A StringPtr (L) Ptr to text string
WriteString $1C StringPtr (L) Ptr to text string

Table R12-2:

The Text Tool Set Error Codes

Error
Code Description of Error Condition -
$0C01 Illegal device type code,
$0C02 lllegal device number.
$0C03 Illegal operation,
$0C04 Undefined hardware error.
$0C05 The device is no longer on-

line,
Table R12-3: Useful Functions in the Miscellaneous Tool Set (%03)

Function Stack Description of

Funetion Name Number_ Parameters Parameter
CetIRQEnable $29 result (W) Interrupt status word
IntSource 523 IntControl (W) Interrupt control word

454 Using the

Text Tool Set

Listing 12-1: Character Device Initialization Subroutines

. Enable the 80-column video display for output and the
1 B0-column keyboard input subroutine.

VIDEO_ON START

PEA 0 sBASIC dewvice driver
PushLong #3 :Select slot #3 for output
_GSetOutputDevice

PEA 1 :Initialize output device
_InitTextDev

PEA] ;BASIC-type device
PushLong #3 1Select slot #3 for input
_SetlnputDevice

PEA 0 sInitialize input device
_InitTextDev

PEA $FF sAND mask: do nothing

PEA $80 :0R mask: set high bit
_SetOutGlobals

PEA $FF ;AND mask: do nothing

PEA $80 :0R mask: set high bit
_SetInGlobals

RTS

END

s+ Enable the printer in slot 1. This 1s equivalent
: to a PR#1 in the good old days.

PRINT_ON START

PEA] ;BASIC device driver

PushLong #1 :Select slot #1 for outputl
_SetOutputDevice

PERA 1 sInitimlize the outputl device

_InitTextDev
RTS

END

Reference Section 455

Listing 12-2: The PRINT and PRINTLN Macros for Sending Text to the Active
Output Device

PRINT 'text phrase’

This prints a line of text without a trailing CR.

MACRO

klab PRINT &text

tlab PEA tésyscntl-16 iPush pointer (high)
PEA tésyscnt iPush pointer (low)
LDX #$1C0C iWriteString function
J5SL SE10000 :Tool entry point
BRA edsyscnt

tésysent DC IM'L:etext! iLength of text
Dc Chatext? ;The text itself

elsyscnt ANOP
MEND

PRINTLN 'text phrase!

This prints a line of text followed by a CR.

MACRO

&lab PRINTLN &text

tlab PEA tésyscntl-16 iPush pointer (high)
PEA t&syscnt iPush pointer (low)
LDX #$1A0C sWriteline function
JSL $E10000 iTool entry point
BRA edsyscnt

t&syscnt DC [1'L:&text!? iLength of text
DC Clatext" iThe text itself

eksyscnt ANOP
MEND

Listing 12-3: The GOTOXY Subroutine for the 80-column Text Screen

i GOTOXY Subroutine. Enter with the horizontal position in X
i and the vertical position in Y.

CH GEQU $24 iCursor horizental
cv GEQU $25 iCursor vertical
OURCH GEQU $57B sCursor horizontal

456 Using the Text Tool Set

CR GEQU $8D ;jCarriage return code

GOTOXY START
PHX ;Save horizontal positiaon
DEY ;Reduce vertical coordinate by 1
TYA ; and put it in the A register.
SEP #3520 +B-bit accumulator
LONGA OFF
STA >CV sMonitor's CV (cursor wvertical)
REP 520 :Back to 16-bit accumulator
LONGA ON
PEA CR ;(do this first to make sure
_WriteChar i the vertical change takes hold)
PLA ;Get horizontal position
SEP #5210 18-bit accumulator
LONGA OFF
STA >CH sMonitor's CH (cursor horizontal)
STA >0URCH +CH for 80-column firmware
REP #3520 ;sBack to 16-bit accumulator
LONGA ON
RTS
END

Listing 12-4: A Program for Exercising the Text Tools

I R R R R R R S SR R R S RS R RS RS R E N RN

* Exploring the Text Tools +

I EEEEEEREEEEE S SRS R EE S R E R R EESNE]

LIST OFF

SYMBOL OFF

ABSADDR ON

INSTIME O

GEN ON

KEEP TEXT ;0bject code file

MCOPY TEXT.MAC ;Macro file
MyCode START

Reference Section 457

iMonitor zeroc page locations:

WNDLFT GEQU $20 sLeft edge of window

WNDWDTH GEQU $21 sWidth: must be <= BO0-WNDLFT
WNDTOP GEQU §22 iTop line

WNDBTM GEQU $23 ;Bottom line + 1

CH GEQU $24 ;Cursor horizontal

cv GEQU $25 ;Cursor vertical

OURCH GEGQU $578 ;Cursor horizontal

;Special video commands:

CURSOROFF GEQU $85 1Cursor off
CURSORON GEGQU $86 ;Cursor on
BEEFP GEQU $87 ;Beep the speaker
BACKSPACE GEQU $88 iMove cursor left
LF GEQU $84 iMove cursor down
CLREOP GEQU $8B ;Clear to end of screen
CLRSCREEN GEQU $8c ;Clear the entire screen
CR GEQU $8D jCarriage return
NORMAL GEQU $BE sNormal video
INVERSE GEQU $BF sInverse video
SET_40COL GEQU $91 ;Switch to 40-column display
SET_80COL GEQU $92 ;Switch to 80-column display
PAUSE GEQU $93 ;Stop output until key pressed
FIRM_OFF GEQU $95 sTurn off enhanced video firmware
SCROLLD GEGQU $96 1S5croll down
SCROLLU GEQU $97 iScroll up
MTXT_OFF GEQU $98 iMouseText off
HOME GEQU $99 iMove cursor to top left corner
CLRLINE GEQU $9A iClear line
MTXT_ON GEQU $9B sMouseText on
MOVERIGHT GEGQU $9C iMove cursor right
CLREOL GEQU $9D ;Clear to end of line
SET_CURS GEGQU $9E ;Set cursor (BASIC only)
MOVEUP GEQU $9F iMove cursor up
PHK ;Set data bank = program bank so we
PLB ; can use absolute addreﬁsing.
_TLStartup :Tool locator
_MTStartup ;Miscellaneous Tools
PHA
_MMStartup iMemory Manager
PLA
5TA My 1D
_TextStartup ;Text Tools
JSR VIDEO_ON ;Set up BO0-column 1/0

458 Using the Text Tool Set

: Just for fun, let's display the entire
; MouseText character set:

Showlcan

PRINTLM 'Here is the MouseText character set:!
PEA CR

_WriteChar

PEA MTAT_ON

_MWriteChar :Enable MouseText
PEA INVERSE

_WriteChar ;5elect inverse mode
LDA #3C0 ;First MouseText character
PHA

PHA

_MWriteChar ;Display 1t

PLA

INC A

CMP #SED 1At the end?

BNE Showlcon :No, so branch

PEA NORMAL

_WriteChar :Select normal mode
PEA MTXT_OFF

_WriteChar sDisable MouseText
PEA CR

_MWriteChar

PEA CR

_MWriteChar

; GOTOXY positions the cursor:

Get _Mode

LDX #10 ;Horizental pesition
LDY #8 ;Vertical position
JSR GOTORY

PRINTLH '<- - - coordinate (10,8)'

PEA CR

_WriteChar

PEA BEEP

_WriteChar

PRINT 1Send output to [Slcreen or [Plrinter? !

PHA

PEA 1 ;echo the input
_ReadChar ;Read keyboard input
PLA

Reference Section

459

FanlMsg

ShowMsg

1Shut down

CmpP #15!

BEG ShowMsg
CMpP #igt

BEQ ShowMsg
CHMP #IPY

BEG PrintMag
cmpP flp!

BENE Get_Mode
JSR PRINT_ON iEnable the printer
PEA CR
_WriteChar

PEA CR
_MWriteChar

FRINTLN '"PRINTLN is a macro which displays a line!
PRINTLN 'of text followed by a Carriage Return.'

PRINT '"PRINT does the same thing, except there!
PEA CR

_MWriteChar

PRINT '1s no trailing Carriage Return.!

PEA CR

_HWriteChar

PEA CR
_MWriteChar

FRINT 'Press any key to Quit: !

PHA

PEA $0000 iNo echo

_ReadChar iWait for keypress

PLA

JSR VIDED_ON iBack to 80-column screen

the tool sets we used:

_TextShutDown

PushWord MyID
_MMShutDown

_MTShutDown
_TLShutDown

_QUIT QuitParms

BRK $FO s (should never get here)

460 Using the Text Tool Set

QuitParms DC 14000

DC 1210000 :Not restartable
My ID DS§ 2
END

; Use the COPY directive to include the PRINT_ON and
» VIDEODO _OM subroutines found in listlng 12-1 and
the GOTOXY subroutine in listing 12-3.

-

Reference Section 461

APPENDIX 1

ASCII Character
Codes

Characters such as letters and digits are stored inside the Gs in binary form (a series
of 1s and 0s), the only form a computer understands. The Gs system software uses
the ASCII (American Standard Code for Information Interchange) scheme for as-
signing characters and symbols to numeric codes. In fact, almost all microcomputer
software uses the ASCII standard.

In the ASCII standard, each character is represented by a series of seven 1s and
0s. These binary digits occupy the first seven bits of the byte in which a character
is stored. This means that 128 unique codes are available, enough to account for all
the printable symbols on a standard typewriter keyboard and a few more. The
unused bit in a byte is usually set to 0, but if you are sending characters to the text
screen of the Gs, it must be set to 1 (see chapter 12).

The system font, which QuickDraw II uses when it draws text on the super high-
resolution graphics screen, assigns special symbols to the 128 codes which have the
high bit set to 1. These symbols are not defined by the ASCII standard and can
represent any symbol the designer of the font wishes.

The first 32 ASCII characters are called control characters. They are not supposed
to represent visible symbols; instead, they are to be sent to a video display device
or a printer controller to cause it to perform some special action such as ringing a
bell (ASCII code 7, bell), moving the cursor or print head to the beginning of a line
(ASCII code 13, carriage return), or moving the cursor or print head down one line
(ASCII code 10, linefeed).

Although the driver for the Gs 80-column text screen reacts to most control
characters in standard ways (see chapter 12), the QuickDraw II text-drawing func-
tions do not (see chapter 6). Instead, QuickDraw attempts to draw a symbol that
was assigned to the code when the font was defined. For the system font, four
control characters are associated with special symbols:

463

311 Open-Apple icon
312 Checkmark icon
513 Diamond icon
$14 Solid-Apple icon

Other control characters in the system font are blanks or are undefined. {(Undefined
characters appear as white question marks on a black background.)

The following table shows the standard symbols for all 128 ASCII character codes.
It also indicates how you can enter each character code from the keyboard.

Note that in certain situations, the s displays MouseText icons on the text screen
instead of the standard symbols for codes $40 to $5F. See chapter 12 for an expla-
nation of when it does this.

Table of ASCIT Character Codes

ASCII code
Dec Hex Symbol (or mnemonic)) Keys to press
000 $00 NUL (Null) Control @
001 %01 SOH (Start of header) Control A
002 %02 STX (Start of text) Control B
003 303 ETX (End of text) Control C
004 $04 EOT (End of transmission) Control D
005 %05 ENQ (Enquiry) Control E
006 $06 ACK (Acknowledge) Control F
007 07 BEL (Bell) Control G
008 508 BS (Backspace) Control H or
Left-arrow
009 %09 HT {Horizontal tabulation) Control I or
Tab
010 S0A LF (Line feed) Control | or
Down-arrow
011 $0B VT (Vertical tabulation) Control K or
Up-arrow
012 $0C FF (Form feed) Control L,

464 Appendix 1

ASCII cqt_{e

Dec Hex Symbol (or mnemonic) Keys to press
013 50D CR (Carriage return) Control M or
Return
014 30E SO (Shift out) Control N
015 S0F SI (Shift in) Control O
016 810 DLE (Data link escape) Control P
017 s11 DC1 (Device control 1) Control Q
018 $12 DC2 (Device control 2) Control R
019 $13 DC3 (Device control 3) Control §
020 $14 DC4 (Device control 4) Control T
021 §15 NAK (Negative acknowledge) Control U or
Right-arrow
022 516 SYN (Synchronous idle) Control V
023 $17 ETB (End transmission block) Control W
024 518 CAN (Cancel) Control X
025 $19 EM (End of medium) Control Y
026 S1A S5UB (Substitute) Control Z
027 $1B ESC (Escape) Control [or
Esc
028 51C F5 (Field separator) Control \
029 31D GS (Group separator) Control |
030 31E RS (Record separator) Control *
031 $1F US (Unit separator) Control _
032 $20 (space) Space Bar
033 $21 ! Shift 1
034 $22 Shift ’
035 $23 # Shift 3
036 $24 $ Shift 4

Appendix 1 465

ASCII code

Keys to press

Dec Hex Symbol (or mnemonic)
037 525 %
038 526 &
039 $27

040 528 {
041 $29)
042 $2A *
043 $2B +
044 82C

045 52D

046 52E

047 $2F !
045 $30 0
049 331 1
050 $32 2
051 833 3
052 $34 4
053 $35 5
054 536 6
055 $37 7
056 $38 b
057 539 9
058 $3A

059 3B

060 $3C <
061 33D =
062 $3E =
466 Appendix 1

Shift 5
Shift 7

Shift 9
Shift 0
Shift 8
Shift =

1]

=~

O o0 -1 & G = W R e

Shift -

Shift |

Shift .

ASCII eode

Dec Hex Symbol (or mnemonic) Keys to press
063 $3F ? Shitt /
064 $40 (@ Shift 2
065 $41 A Shift A
066 £42 B Shift B
067 343 C Shift C
068 %44 D Shift D
069 545 E Shift E
070 546 F Shift F
071 $47 G Shift G
072 545 H Shift H
73 $49 1 Shitt 1
074 $4A I Shift]
075 $4B K Shift K
076 $4C L Shift L.
077 $4D M Shift M
078 34E N Shift N
079 $4F O Shift O
080 $50 P Shift P
081 $51 Q Shift
082 §52 R Shift R
083 $33 5 Shift S
084 %54 T Shift T
085 $35 U Shift U
056 $56 v Shift V
087 $57 W Shift W
088 $38 X Shift X

Appendix 1 467

o _ASCH code

Dec Hex Symbol (or mnemonic) Keys to press
059 539 Y Shift Y
090 BIA Z Shift Z
091 $58 [|

092 $5C \ \

093 $5D] I

094 $5E : Shift 6
095 $5F - Shift -
096 $60

097 §61 a A

098 $62 b B

099 $63 c C

100 $64 d D

101 $65 e E

102 $66 f F

103 $67 g G

104 $68 h

105 $69 i 1

106 $6A i]

107 $6B k K

108 $6C 1 L

109 $6D m M

110 $6E n N

111 S6F 0 O

112 $70 p P

113 $71 q

114 $72 r R

468 Appendix 1

ASCI{ code

Dec Hex Symbol (or mnemonic) Keys to press
115 $73 5 S

116 874 t T

117 $75 u U

118 $76 v v

119 8§77 w w

120 $78 X X

121 %79 v Y

122 5TA z Z

123 $7B { Shift |
124 $7C | Shift \
125 $7TD } Shift |
126 37E = Shift *
127 87F {rubout) Delete

Appendix 1 469

APPENDIX 2

The wWesterm
Design Center
W65C816 Data
Sheet

471

CMOS W65C816 and W65C802
16-Bit Microprocessor Family

Fealures General Description
* Advanced CMOS design for low power consumplion and increased WDC's WESCE02 and WBSCH1E are CMOS 16-bit microprocessors fea-
OIS EMmunity turing 1018l software compatibility with thair B-bit NMOS and CWMOS 6500-
= Single 3-6Y power supply, 5V specilied s6fies predecessors. The WESCE02Z 8 pin-10-pin compalible with 8-bil
= Emulation mode allows comphele hardware and soltware devices currently available. while the WESCE1E extands addressing loa
compatinlity with 8502 designs full 18 megabyles These devices offer 1he many advantages of CMOS
® 24-pal acddreas bus allows pccess 1o 16 MByles ol memaory space technology, including mcreased noise immiunity, ighar reliability, and
& Full 18-bit ALLL Accumulator. Stack Posnter, and Index Regsters greatly reduced powar requirements. A soltware switch determines
= ahd Data Address (VDA) and Vallg Program Addreas (VPA) oulput whether Ihe processod (5 in the B-bil “emulation” mode, o in e native
allows dual cache and cycle steal DMA implementation mode, 1nus Bllowing existing systems 10 use the expanded features
* Vector Pull (VP) outpul indicates when intarrupl vectors are being A3 shown in the processor programming made, the Accumulator, ALU,
addressed. My be used 1o implerment vectored mterrupt design X ana ¥ Index registers, and Stack Pointer register have all been ex-
*® Abort (ABORT) input and associated veclor supports virtual memory tended o 16 Bils, A new 16-Dil Difect Page registes Augments tha Direc!
system design Page addressing mode (lormerly Zero Page addressing). Separate
* Separate program and data bank registers allow program Program Bank and Data Bark registers allow 24-bil memory addressing
sagmentation of full 16-MByie inaar .ﬂldmng with seg or linaar g

MNew Direct Register and stack relative addragsing provides capability

for re-gntrant. re-cursive and re-iocatable programming

24 addressing modes— 13 onginal 6502 modes, plus 11 new

addressing modes with 91 instruchions using 255 opcodes

® Mew Wail for Interrupt (WAL} and Stop the Clock {STP) instructions
fUFINET feduts powed Coniumplion, decrease interrupt llancy and
allows synchromizalion with exiernal evenis

® Mew Co-Frocessor insiruchon (COP) with associated vecior sup-

Four new signals provide the System designer with many oplions. The
ABOAT input can interrupt the currently execuling instruction withoul
modifying internal registes, thus allowing virtual memaory systam design

Valid Data Address {VDA} and Valid Program Address (VPA) oulputs
facilitale dual cache mamery by indicating whether a daia segment ar
program sagmant 18 accessed. Moditying a vector is made easy by
monitoting the Vector Pull [VP) oulput.

ports co-processor configurations, e, floaling point processors Mole To assist the design enginees, a Caveat and Application Infor-
= MNew biock move apilily mation seciion has bean included within this data sheet
WGE5C816 Processor Programming Model Pin Configuration
£ T _amm 1 8iTs | 5 -
I Data Bank Reg | X Aegmter AT T X Tow e g Bt s = M = ey
oSl Bl Dl IR LEL =
I Data Bark Feg ¥ Aegster Hi L ¥ Ragmter Low - ‘ e =H b=t
L__ 1o8Ri__ P ony = o b —— BN
e |5m Register H) [, " Stack Low : e = :#::;:
Lo: == __ (5] 1 &.’f 1 e) o e :g:
EI 8502 Accumul % Accumuletor . fon = o=
= Lt iy
Regisiers L [L:]] !? 1A} % e s = » 5
- =11 =
rogram Bank Reg T Counter . T =t =
T W EEHE =
 BEERieTr Direct Reg HI irect Aeg Low £
Lo o (B (L) Fis
LRI R ERE = r—
Status Register Coding SEEEEEEE R asm] § .
STATUSREG. (P] - ol 18 = =
[7]8] [emurarion 1 - 6502 L o[=
NVMXD I ZC 0= NATIVE you s 1= i
et s "
CARRY 1= TRUE 5 A St
ZERD 1+ RESULT ZERD u ol " "
IRQ DISABLE 1= DISABLE 4 e o
DECIMAL MODE 1= TRUE - »joras " n
INDEX REG SELECT 1+8BIT0- 168BIT LS LA L EEERE] W o
MEMORY SELECT 1=BBITO=16BIT R E I F R biot = I
OVER FLOW 1=TRUE ¥
NEGATIVE 1% NEGATIVE For notes, refer to Packaging information section.
Detign Engeness Wilsam O Mesach Jr
Advance Information Data Sheet:
THEWESTERNDESIGNCENTER. INC. ol ¢
2166 Esat Brown Fgacd « AMass. Arzore 85303« 5602 962.45.4% "“s " -dvamd Inlnrmahan and
specifications are subject to change

without notice,

472 Appendix 2

Absolute Maximum Ratings: (Mo 1)

This dewice containg nput prolection against damage due Lo high static
volleges or slectric fislas; however. procautions should be taken to avoid
application of voltages higher than the mazimum rating

1. Ex g thesa ratings may cause permanent damage. Functional
opesalion under these conditions is not impled

Rating Symbol Valus
Supply Vollage Voo -0.3W 1o + 7.0V
Input Voltage Vi -0.3¥ to Voo +0.3V Notes
Operating Temperatune Ta 0*C 1o +70°C
Storage Temperalure Ts =85*C 1o «150°C

DC Characteristics (All Devices): voo = 50V +5% Vss = 0V, Ta + D°C 1o +70°C

Parameier I Symbol l Min Max Unit |
Input High Voltags o Wik | |
RES, RDY, IRQ, Data, 50, BE, [20 Voo + 0.3 oo
@2 (IN}, M1, ABORT 0.7 Voo Voo « 0.3 v
Input Low Valtage - i |
RES. ADY, IAQ, Dats, 50. BE. 03 | 08 v
| @2 [IN), NMI, ABORT | 0.3 02 v
| Input Leaxage Current (Vis = 010 ¥oD) ™ [
AES, NMI, IRQ. SO, BE. ABORT (Inlernal Puliup) 100 1 A
| ADY [Imzrmal Pullup, Open Drain| 100 [10 uh
| @2 IIN) e | -1 [1 A
| Address, Data, R/W (Off State, BE = 0} | =10 | 0 A
| Output Hign Voltage (o= = 100uA) Vau I
SYMC, Data, Acdress. AW ML VP MK E VDA VPA,
| @1 |OuT), e2 1OUT) 0.7 Voo | — W
Output Low viollage (lou = 1.6mA) Wim, \
| SYNC, Dale, Address, AW, ML, VP, M/X E VDA, VPA | [
| #110UT), e2 (OUT) = : o4 ¥l
| Supply Current (Mo Load) | Ion | 4 mA-‘MH:]
Standby Current |No Load, Data Bus =Vss or Voo =B o
RES, NMI, 1RO, 50, BE. ABORT, p2 = Voo) o wh |
Capacitance (W = OW Ta = 24°C 1 = 2 MHz| |
Logic. ¢2 {IN} Cin — 0 F |
Address, Data, AW (O State) Crs — 15 pF |
Pin Function Table
Pin | Dascription Pin Description
AQ-A15 Address Bus NG Mo Conneclion
ABORT Abort input Ml Non-Maskable interrupt
8E Bus Enable ROY Ready
82 (IN} Phase 2 In Clock RES Resst
@1 {OUT) Phase 1 Out Clock AW RAmac/Write
#2(0uUT) Prase 2 Oul Clock 50 Set Overflow
Do-o7 Data Bus (GESSCENZ) SYNC Synchronize
| DO/BAD-DT/BAT Data Bus, Multiplesad |{GESSCH16) VDA Valid Data Address
| Bl
T E Emulation Selec ' Wectar Pull
TRO Interrupt FRequest VPR Valid Program Address
WL Memary Lock Voo Positive Power Supply (-5 Volts)
MIX Mode Seiect (Pu or Pa) Vis Internal Logic Ground
Appendix 2 473

AC ch!rlctorlﬂlm (WBSCB16): voo « 5.0V £5%. Wss = O, Ta = 0°C o «70°C

2 MHz 4 MHz B MHz B MHz
Pacameter Symbal | Min | Max | Min | Max | Min | Max | Min | Max | Unit
Cycle Time teve 500 | DC | 250 | DC | 167 | OC | 125 | OC | n8
| Clock Pulse Width Low P 0240 i | 0120 10 | QO8O0 10 | 0060 i0 b
"E-B:ipuln Width High E = IPwH 240 - 120 |_ - 8a - 60 - nS
Fall Timea, FRise Time te, s — 0 = | 10 — 5 — 5 ns
AD-ATS Hold Time i i0 - 10 - i = 0 - nS
AD-A15 Satup Tima tans - 100 — | 7 - &0 — 40 ns
BAD-BAT Hold Time tan AL — w| = 10 — 10 - ns
L B}O-B_-}.r?ja'!‘ul: Time fEas - 100 — [a0 - (] = :5'— ns
| Access Time == 1acc 365 — 130 | — & | - 7o — n&
Fead Data Hald Time o= 10 — w| = m | = AL - nS
RAead Data Setup Time 1osm 40 — o | = 20| — 15 — ns
Write Data Delay Time tMps — wo [— [m [— 6@ | — aw | ns
! Write Data Hold Time . |t |10 - | w)] — | 1w | = 0 — nS
Processor Control Setup Time tecs 40 | - 0| - 15 - ns |
_P[Fn: Controd Hold Time RCH i — o | — 1 10 — ns _
X Output Hold Tme ey) va] ~ | sl =~ gl =4 8l =]ns]
E.MX Dutpul Selup Time tes 50 S0 | - 26 - 15 - nS
| c-i!pat.llil'ﬂ Load |Address, Data, and FOW) CExT — 100 — 100 — 35 — a5 pF
hB-E. ™ Hign Impedance State TEHL — | X — 30 - 3o - 3o nS5
BE o Vald Data - wo [— | — | 3| - 0 | — 0 | ns
Timing Diagram (WE5C816)
hove it—— P
S2(IN} —.,‘_j _‘! s
! -l
L S _-1 [— S [|
Row, ML, VP '@l
AD-ATE, VDA, VPA
iaos L [fnsm
AEAD DATA, E { BAD-BAT % | |meaooama
. R inm

WRITE OATA, :
A M BAD-BAT W WRITE DATA
[——]..._ R L-I— tuos _...I .

o o - A
ABGAT J 1{:_
! S 7/,

Timing Notes:
1 Vollage levels are Vi < 04V Wa > 2 4V
2 Twmng measurement ponts are 08V and 2 0V

474 Appendix 2

AC Characterislics (WB5C802): voo - s 0v.

L Wss =0V, Ta = 0°C 1o +70°C

2 MHz 4 MMz B MHz & Mz
Parameler Symbol Min | Max | Min | Max | Min | Max | Min | Max | Unil
Cycle Time teve 500 D 250 oc 187 D 125 bc nS
Clock Pulse Width Low tiw, 0240 | 10 0120 | 10 | 0080 10 | 0060 | 1w 5
Clock Pulse Widih High 1Pwn 240 = 120 = BO = | &0 = | nS
| Fall Time, Fsa Time T wm - w | — 0w — 5 | — 5 | ns
Delay Time. @2 (IN) 1o @1 ([OUT) fod - 20 - x| - 20 - 20 ns
Delay Time, @2 [IN) to $2 (OUT) g2 — 40 - a0 - A = A0 ns
Addrass Hold Time 1as 10 = 10 — 10 - 10 - ns
Address Setup Time 1aGs - w | = 75 — | 60 - 40 ns 1
Mccess Time tacc 365 — L B | - 70 — ns
Aead Data Hold Tima ot 10 - 10 = 10 ~ 10 -
Read Data Setup Time tasA 40 i) — 20 - 15 —
wn:_e Diata Dwlay Time wos - 100 — 7o — | &0 — 40 nS
Write Data Hold Time tomw w| — [w| — w | — | - ns
Processor Control Setup Time [a0 = ki - __20 - 15 = ns
Processor Control Hold Time treH 10 — | W 10 e 10 = ns
Capacihve Load (Address. Data, and RAW) L _ Cext - 1w | g | - s | - e pF
Timing Diagram (WE5CB02)
oy - iF
o2 (IN)———— &)
/ I
L] .y rws
| —— IR
#14{0UT} —"T..L-ﬂ \ 2
#2{0UT) _—:ﬁ_f— De1 /
I
el T ——-—l
Rt KUK
AD-R1S
tacec fo——— BirRA
READ DATA - READ DATA
WRITE DATA M —"{'_wm‘i DATA
IRD, NML, RES,
o A X
— [— tpCH —I-l [— trCH
Timing Notes:

1 Voltage levels are Vi -2 04Y, Ve - 2.4V

2 Timing measurement points ara 0.8Y and 2.0V

Appendix 2 475

Functional Description

The WESCE02 offers the design engineer ihe opportunity to ulilize both
existing software programs and hardware configurations, whie slso
achiewing the added advaniages of increased register lengihs and laster
execution times. The WE5CA0Z's “sase of usa” design and implamenta-
fiar features provide the designer with increased Dexibility and reduced
implamentation casts In the Emulation mode, the WESCS02 not only
offers sofiware compatibility, bul is alsa hardware |pin-lo-pin) com-
patible with B502 designs.. plus i provides the advanisges of 18-bit
iniernal operation in 6502-compatible applications The WBSCE02 15 an
excatlant direct replacement microprocessor for B502 designs

The WESCE1E provides the design enginaer with upward mability and
soliware compalibility in applications wheres a 16-bil system configura-
fion is desired. The WESCB16's 16-Dit hardware conliguration, coupbed
with current soltwars allows 8 wide saleclion of system applications. In
the Emulation mode. the WESCE16 offers many advaniages, including
Tull soltware compatibility with B502 coding. In additon, the WESCE16S
powerful instruchion sel and addressing modes make it an excellent
Choice 1or few 18-bil designs.

Internal organwanon of the WESCA02 and WESCH 1S can be divided inla
Two parts 1) The Register Section, and 2) The Control Section Instruc-
tons (or opcodes) oblained lrom program memaory are execuled oy
implementing a series of data transfers within 1he Register Section
Signals that cause data ransfers o be executed are generated within the
Control Sectipn. Both the WESCE0Z and the WESCA16 have a 15-bil
internal architecture with an 8-bil external data bus

Instruction Register and Decods

An oprode enters the processor on the Data Bus, and is latchad in1o 1he
Instruction Regisler during the msiruction fetch cycle This instruction
18 1hen decaded, along with liming and interrupt signals, 10 generate the
vargus Instruction Register control signats

Timing Conlirol Unit (TCU)

The Timing Control Lnit keeps track of each instruction cycle as i is ex-
eculed, The TCU is 881 to 2ero each fime an instruction fatch is executed,
and s advanced at the beginning of eack cycie for as many cycles as i
required 1o complete the instruction. Each data franster Detwesn régis-
ters depends upon decoding the contents of both the Inatruction Regis-
ter and the Timing Control Uinit

Arithmetic and Logic Unit (ALU)

All anthmatic and logic operahons take pace within ihe 16-bit ALU In
addilion 1o data operations, the ALU also calculates the elfective address
far relative and indexed addressing modes. The result of a data operation
& stored in either memory of an inlernal regsster Carry, Negative, Ower-
figw and Zero fiags may be updated foliowing the ALU data operation

Internal Reglsters (Aafer 10 Programming Modal)

Accumulators (A, B, C)

The Accumulator 1 a general purpose register which stores one of the
Gperands, or ihe rasult of mast anthmetic and logical operatons. in the
Malive mode |E-0). when the Accumulator Seiect Bit (M) équals zero.
the Accumulator s established as 16 bils wide (A + B = ©) When the
Accumulator Select Bit (M) equals one, 1he Accumulator is 8 bits wide
(A). In this case, the upper B bits (B) may be used for lemporary sierage
in conjunciion with the Exchange Aceumulator {XBA) instruction
Data Bank Regisier (DBA)

During modes of aparation, the B-bil Data Bank Register holds the de-
{ault bank address for memory transfers: The 24-bit address s compasad
af the 16-bil instruction effective addross and the B-bii Data Bank ad-

476 Appendix 2

dress. Tha register value is multipiewed with the data valus and is presant
on the Data/Address lines during the first nalf of a data transtar mamory
cycle for the WESCE18. The Data Bank Register is initialized io zero dur-
ing Resa

Direct (D)

The 16-bit Direct Register provides nn address offset for all ingtructions
using direct addressing. The elfective bank zero address (s formed by
adding the 8-bil instruction oparand address 1o the Direct Register The
Direct Register is intialued 1o zero during Reset

Index (X and Y)

Thare are two Indes Registers (X and Y) which may be used as ganers|
PUTPOsE registers of 1o provide an index value lor calcylation of tha af-
fective address When execuling an instruction with indexed aodressing,
ine micropiocessor leiches the opeode and the base address, and then
medifies the address by adding the index Ragister contents 1o the ad-
dress prior to perlorming the desired operation. Preé-indexing or posi-
indexing of indirect addresses may be selected. In the Natve mode (E=0),
bath Indax Registers are 16 bats wide (provding the Index Select Bit (X)
eguais zero). If the Index Select Bit {X) equals one, both registers will be
A bits wide, and the high byte 18 forced to zero.

Processor Status (P)

The 8-bit Processor Status Register coniains siatus Nlags and mode seiect
bits. The Carry (C), Negative |N), Overfiow V), and Zero (Z) status Hags
serve 10 report the status of most ALU operations Thess s1atus Nags ane
tesled by use of Conditional Branch instructions. The Decimal (D), IRG
Desable (1}, Memory/Accumutator (M), and Index (X) bits are used as
mode select liegs These lags are set by the program to change micro-
processor operations

The Emulation [E) select and the Braak [B) fia 0 ACCERSIDIE only
theaugh the Processor Status Register. The Emulation mode selsct Nag
is selocted by ihe Exchange Carry and Emudation Bils (XCE) instruction
Table 1. WBSCB02 and WESCHIE Mode Comparison, illustrates the
features of the Mative |E=0) and Emulation (E=1) modes The M and X
Nags are always equal to one in the Emulatan mode When an interrupt
oecurs during the Emulation mode, the Break flag is writien 1o siack
mamaory as bit & of the Processor Status Regster.

Program Bank Regisier (PBR)

The B-bit Program Bank Register holds the bank address for all inalruc-
tian felches. The 24-bit address consists of the 16-bit instrection elfective
address and ihe 8-bd Program Bank address. The register value is mulli-
plesed with the data value and presantad on the Data/Address (ines duning
the first half of a program memory read cycle. The Program Bank Ragis-
ler is initialized to zero dunng Aesel The PHE mstruction pushes the
PBA register onta the Stack

Program Counler (PC)

The 16-bit Program Counter Registor provides the addresses which are
used [0 siep 1he microprocessor thiough seguential program nstruc-
trons. The register is incrementad ach 1ime an instrection or operand is
fetched from program memary.

Stack Pointer (S)

The Stack Pointer & a 18-bii regisier which s used to indicate the neat
avaslable location in the stack memory area |1 sarves as the ellective ad-
dreess in stack addressing modes as wall as subroutine and inbetrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routings and mulliple-lovel interrupta. During the Emulation mode, the
Stack Pointer high-order byle (SH) is always equal io one The bank ad-
dress for all stack operations s Bank zero.

HDER T
(W BITE)

K== K

5 [e—— AWGHT (2w}
= i e L T- 1
& INTERAURT
3| mmmr KOAE B e —
-.nr<: H s
; ¢>§ la—— WER -— v
K ni‘:ﬂ'h E —|
& i RS o vor
- :
TRAMSFER
- SWITCHES
‘ -
g N e SZ
= w
E .ml:eclu'i:ull.r.rnl L | E " - 23 {184]
&) (8 2 "
" I} faaia) @i 3 §=] :ELE'E: - 1 4OUT) (801
]]
ﬁ i ; a5 Si e &3 (0UT) (02}
W el | |48
= g gi
e g H H —
. G cwae K—)fF 8§ i
(L] L o -
= = STHE (802
-
: ———
-
" nna‘m'u’qlunn e [T
Q-0 (8 E I PAOCESSOR i S
DO/RAL-DT BAT (818 : [1 N
- TF (0]
H
-5 dl_‘ mﬁ‘:ahl e Lms
Lir : IMATAUCTION REGisTER I ——

Figure 1. Block Diagram — Internal Architecture

Signal Description

The tollowing Signal Descriplion applies to both the WESCB0Z and the
WESCA18 encepl as otherwise nolad

Aborl (ABORT)—WESCE16

The Abort input is used to abort instructions [usually due to an Address
Bus condition }. A nagative transition will infibit modification of any in-
ternal register during the current instruction. Lipon completion of this
instruction, an intarrupt Sequence is initiated, The location of the aborted
opeode is stored as (he retufn Bddress in stack memory. The Abort vector
address is DOFFFB.9 (Emulation mode) or 00FFES.S [Malwe mode). Nole
that ABORT is a pulse-sensitive signal. i.e., an aport will occur whenaver
thera is 8 nagative pulse (or level) on the ABORT pin during & &2 clock

Address Bus (AD-A15)

These sixtean oulpul lines form the Address Bus for memory and 110
exchange on the Data Bus. When using the WESCE1E, the address lines
may be set to ihe high impedance state by the Bus Enable (BE) signal

Bus Enable (BE)—WBSCB16

The Bus Enable input signal allows external control of the Address and
Data Butfers, as well as ihe R/ signal With Bus Enabia high, the R/
and Address Buffers are active. The Data/Address Bullers are actve
during the firat nalf of every cycle and the second hall of & write cycle.
When BE is low, these buffers are disabled Bus Enable is an asynchro-
mous shgnal

Dala Bus (D0-D7)—WE5CB02

The eight Da1a Bus lines provide an b-brt badirgchional Data Bus lor use
during dala @xchanges belween tha mICroprocessor and axstarnal mem-
ory or panpherals. Two memory cycles are required 1or the transier af
A6-bui walues

Dala/Address Bus (D0/BAD-D7/BAT)—WESCAE16
Thase eight lines multiphex address bits BAD-BAT with the data value. The

Appendix 2 477

addrass is present during the first half of a memory cycle, and the data
valug is read of written during the second hall of the memary cycle. Two
MEMOry Cycles are required to transter 16-bit valuas, These lines may be
58t 10 the high impedance siale by the Bus Enabie {BE) signal,

Emulation Status (E)—WB5CB16

The Emulation Status output reflects it.e stale of the Emulation (€] mode
flag in the Processor Status {P) Register. This signal may be thought of
as an opooda extension and used for memory and aysiem managemant

InterTupt Request (IRQ)

The Interrupt Request input signal is used 1o request 1ne1 an interrupt
saquence ba initiated. When the IRQ Disable (1) f1ag i cleared, & low in-
pul logic level iniliates an intarrupt sequence &ler 1he current insiruc-
tien is completed The Wait for Interrupt (WAL} instruction may be ax-
ecutad to ensure the intarrupt will be recognized immadiately. The Inter-
rupt Request vecior addrass is 00FFFE,F (Emulation mode| or DOFFEE.F
(Natve mode). Since IRQ (& a level-sansitive inpul. an inierrupt will
accur if the interrup! source was not clearad since the last interrupt
Also, no interrupt will occur if the interrupt source s cloared prior to
interrupt recognition

Meamory Lock (ML)—WBSCE16

The Memory Lock outpul may be used to snsure the intagnity of Read-
Modity-Write instructions in a8 multiprocessar system. Memory Lock
indicates the need to defer arbitration of tha next bus cycle. Memary
Lock 5 low during ihe last ihree or five cycles of ASL, DEC, INC. LSR,
ROL ROR, TRB, and T5B memory referancing instruclions. depending
on the state of the & flag

Memory/Index Select Siatus (M/X)—WE5CB16

This multiplexed autpul reflects the state of ihe Accumulator (M) and
Index (X) sefect Hags (bits 5 and 4 of the Processor Status (P} Register.
Fiag M i wvalid during the Phase 2 clock negative transition and Flag X is
valid during the Phase 2 clock positive transition. These bits may be
thought of as opcode extensions and may be used 16r memory and
sysiermn management

Non-Maskabile Interrupt (NMI)

A negative transition on the NMI input inibates an interrupt sequence. A
high-1a-low trangition initiates an interrupt sequance afler the currant
Instruction is complated. The Wail for interrupt (WA) instruction may be
enetuted 10 ensure that the interrupt will be recognized immediately. THe
Non-Maskable Interrupt vector addrgss is 00FFFAB [Emulation mode)
or GOFFEA.B (Native mode]. Sinca NMI is an edge-sensitive inpul, an
interrupt will occur if there is a negative transition while servicing a pre-
wious interrupt. Also, no interrupt will cgur if NMI remains law

Phase 1 Out (@1 (QUT))—W65C802

This invertad clock oulpul signal provides timing lor external read and
write operations. Executing the Stop [STP) instruction holds this clock
n the low siate.

Phase 2 In (02 (IN))

This is ine system clock input 1o the microprocessor internal elock gen-
arator {equivalent to @0 (IN) on the 8502). Duning the low power Standby
Mode, @2 [IN) shouid Da neld in the figh state to praserve the contents
of internal registers.

Phase 2 Oul (@2 (OUT))—WB5C802

This clock culpul signal provides timing for external read and write op-
erations. Addresses are valid (aftar the Address Setup Time (Taos)) lal-
lowing the negative transition of Phase 2 Out. Execuling the Stop (STP)
instrection holds Phase 2 Out in ine High state.

Read/Write (R/W)

When the FUW oulput signal is in ine high state, the MiGroprocessar s
reading data fram memary or 1/0. Whan in the low state, the Data Bus
contains valid data frorm the microprocessor which is 1o be siored at ine
addressed memary location, Whan using ihe \WESCB16, the /W signal
miay be set to the high impedance siate by Bus Enable (BE).

Ready (RDY)

This bedirectional signal indicates thai 2 Wail lor Interrupt (WaI) instruc-
tizn has bean executed allowing the user 1o halt operation ol ihe micro.

478 Appendix 2

processor, A low input logec level will nalt the miCroprocessor in its cur-
fant stale (note that when in the Emulation mode, the WBSCB0Z stops
only during a read cycie). Aeturning ADY 1o the active high state allows
the microprocessor (o continue following the next Phase 2 in Clock
negative transition. The RDY signal is internally pulled low following ihe
axecution of a Wait for [nterrupt (W1} instruction, and then returned 1o
the high state whan a RES, ABORT, NMI, or IRQ external intarrupt Is
provided. This featune may be used to eliminaty interrupt latency by
pacing the WAl instiruction at the beginning of the IR sarvicing routing.
I e THO Disabie Nag has been set, the next instruction will be executed
when ihe IRQ occurs. The processor will not stop after 8 WA instruction
1t RDY has been forced to & high state. The Siop (STP) instruction has
fo effect on ROY.

Reset (RES)

The Resst input is used 10 initialize 1he microprocessor and start pro-
gram sxacution. The Reset input butler has hysteresis such that a simpia
A-C timing circuit may be used with the internal pullup device. The RES
signal must be held low for at Ieasi two clock cycles aftar Voo resches
operating voltage Ready (RDY) has no effect while RES is Deing held (ow,
During this Resat conditioning period, tha foliowing processar initializa-
Hon lakes place:

Reglaters
(s} = DOOG SH = m
DBR - 00 XH = 00
PER - 00 YH = 00

N ¥ M X D1 Z CE

P S % w1 1 0 1 % &) %= Notinitialized
STP and WAl instructions are cleared,

Signals
E =1 VDA =0
MK =1 VP =1
RW =1 VPA =0
SYNC= 0

Whan Reset & brought high, an interrupt sequence is mitiated:

* A/W remaing in the high state during the stack address cycies.

* The Aeset vector address is DOFFFC,D

St Overflow (SO)—WB5CB02

A negative fransition on this input Sets the Overtlow (V) flag. bit & of the
Processor Status (P) Register

Synchronize (SYNC)—WE5CB02

The SYNC outpul 13 pravided to identity those cycles during which the
microprocessor s letching an opcode. The SYNC signal is high during
an opcode felch cycle, and whan combined wilh Ready (RDY), can be
used for single instruction axaculion

Valid Dals Address (VDA] and
Valid Program Address (VPA)—WBSCE16

These twa autpul signals indicale valid memary addresses when nsgh
{logic 1), and must be used for memary or 1/D address qualification.

VDA VPA

o 0 Internal Operation—Address and Data Bus
available. The Address Bus may be invalid

1} 1 Valid program address —may bae used 1or pragram
£Ladhe controd

1 o Valid data addreas —may be used for data cache
coniral.

1 1 Opecode fatch —may be Used 1of program cache
contral and single step control.

Yoo and Vss

VoD is 1he positive supply voltage andg Vs ia system logic ground, Pin 21
of ihe two Vss pins on the WESCED2 should be used for system ground,

Veclor Pull (VP)—WESCE16

Tha Vectar Pull output indscales that a vector location is bai ng addressed
during an interrupt sequenca VP s low during the las! two inlesrupt
sequence cycles. during which time the processar reads the intermapt
weector. The VP signal may be used o select and priontize interrupis irom
several 5ources by modilying the veclor addresses

Table 1. WESCB16 Compalibility Issues

WE5SCH16/802

T

WasCo2

NMOS 6502

Write cycles

1 5 (Stack) Always page 1 (E -wul Eut: | Always page 1, B bits Always page 1, 8 bits
16 bits when (E = 0) N
2 X (¥ Index Aagister) Indexed page zero always in Always page 0 Always page 0
page O [E = 1), |
Cross page (E * 0)
3 ¥ (Y Index Aagister) Indexed page zero always in Mlwiays page 0 Always page 0
page 0 (E - 1),
Cross page (E = 0} A
4 A [Accumulator) B bits (M = 1), 16 bits [M = DJ_. B bits 8 bits
& P {Flag Registor) M, ¥, and Z flags vald in NV, and Z fags vald in BV, and 2 flags invald
decimal mode decimal mode, in decimal mode
O = 0 alter resel or imerrupi 0 = 0 atter ressl and 0 = unknown alter resel
| aniaerupt O not moditiad after interrupt
& Tirming
A ABS X ASL, LSA ADL, T cyches & oycles 7 cycles
| ADA With Mo Page Crossing
B Jump [ndirect
Oparand = XXFF 5 cyches & cycles | & cycles and invahid page
crossng
C Branch Across Page 4 cycles (E= 1) 4 cycles 4 cycles
Aeycles (E=0)
O Decimal Mode No adoilional cycle Adgd 1 cycle Mo adational w.-_,ncln
7 BRK Vector OOFFFEF (E - 1) BAK = 0 FFFEF BRK bit » 0 on stack FFFEF BRK bl = 0 on stack
on stack i [AG, NMI, ABORT it IRG, Ml i1 TAG, NMI
OOFFES, 7 (E = 0) X = K on
Slack always
« B Interrupt or Break PBRA nat pushad (E = 1} Mol availanie Mol avaslable
Bank Address ATI PER nat pulled (E = 1)
PBR pushed (E « 0)
ATI PBA pulted (E - 0)
8 Memory Lock (ML) ML = 0 dunng Aead, Moty and ML = 0 during Modity and Write Mot avmlable

Extra read of invahd address.

10 Indexed Acioss Page | Extra read ol invalid address. Extra read of last instruction
Boundary (d).y. 8.5 &y (Note 1) feich)
11 ADY Pulled During Write ignored (E - 1) fod WeSC802 only. | Processor stops Ignored
Cycle Processor stops (E - 0)
12 WAl ana STP Instruchions Aviilable Avaslatile | Mot avaitable
13 Unused OP Codes One reserved OF Code specihed Mo opEration | Uinkmown and some “hang
as WDM will be used in fulure up” processor
systems. The WESCEIE perlorms
a no-operation
14 Bank Address Handling PBA - 00 altér resel of interrupis Mol avarlabie Mol avanlabie
15 AW Duning Aead-Modsty- E = 1. AW = D duning Modify and AW « 0 only dunng Write cycle R/W * 0 during Modity and
‘Write Instructions Wite cyclhes Wirile cycles
E = 0, R/W = D onty during
Write cyche.
16 Pin7 WESCEO0Z * SYNC. SYNC SYNC
| WESCHIE = VPA)
17 COP instructon Avaslable Wt availabie Nol avalable

Signatures 00-TF user defined
Signatures BO-FF reserved

Mote 1 See Cavest section lor additional snformation

Appendix 2 479

‘WE5C802 and WB5CB16
Microprocessor Addressing Modes

The WESCE1S 15 capable of drectly addressing 16 MBylas ol memory
Thiz address space nas special sigrilicance within cenain addressing
modes. as loliows

Resel and Inlerrupt Vectors
The Reset and Interrupl veciors use the majority of the heed addressas
betwesn 0OFFED and DOFFFF

Stack

The Stack may use memory fram 000000 16 0OFFFF The effaciive ad-
dress of Stack and Stack Relative addressing modes wll always e within
this range

Direct

The Direct addressing modes are usually used 1o store memory registers
and pointers. The effective address generated by Direct, Direct X and
Direct¥ addressing modes i always in Bank 0 (00D000-00FFFF)

Program Address Space

Tha Program Bank register is not aftected by the Relative. Relative Lang,
Absolule, Absolule Indirect, and Absolute Indexed Indirect addressing
modes or by ingrementing the Program Counter from FFFF. The only
instructions thai atfect the Program Bank register are: RTI, ATL, JML,
J5L, and JMP Absoluta Long. Program code may exceed 64K bytes al-
though code segments may nol span bank boundaries

Data Address Space

Tha data address space is contbguous INfoughout the 16 MByle address
space. Words. arrays, records, of Any dals siructures may span B4 KByle
bank boundaries with No compromass in code etliciency The lollowing
addressing modes generale 24-bit eflective addresses

Direct Indexed Indirect {d,x)

Direct Indirect indexed (d].y

Birect Indirect (d)

Direct Inditect Long [d]

Direct Indirect Long Indexed [d].y

Apsolute a

Abspiule a,x

Absolule Ay

Absoiute Long al

Absolute Long Indexad al.a

* Stack Aetative Indirect Indexed (d 5],y

The lollowing addressing mode descriptions provide additional detas as
o how effective addreases are calculated

Twenty-lour addressing modes are available for use with the WESCAO2
and WESCA16 microprocessors. The “long” addressing modes may be
used with the WESCEO2, however, the high byte of the address is not
availabla to ihe nardware. Detailled descrptions of the 24 addressing
modas are as foliows

1. Immediate Addressing—#

The operand is the sacond Dyte (second and 1hird bytes when in the
16=-twt mode) of the instruction

. Absolute—a

With Absolule addressing the second and third bybes of the instruc-
tion farm ihe low-order 18 bits of the effective address. The Data
Bank Hegister contains the high-ordar 8 bits of the operand address

LR B A B

Instruction: f_ opcoda addrl l addrh |
rand

mn OBA addrh | addr

3. Absolute Long—al

The second, third, and fowrh byle al the instruction ocem e 24-bad
effective aodress

intruction: |_opcoce adarl adarn | baddr |
rand
e | waiee | eai adar |
4. Direct—d

The sacond byle of the instrecticn s added (o ine Direct Aegister
(D1 1o form the effective Bdaress An agditional cycle s reguired

480 Appendix 2

whon the Drect Register s not page aligned (DL not egual 0f The
Bank register is atways 0

instruction: | opcode oltset

| Duract Regrster
- | oitsel

Operand
Address: oo
5. Accumulator—A

This form of aodressing always uses 8 single byte instruction. The
oparand & the Accumulalor

5. Implied—I

Implied addressing uses a single byta instruction. Tha operand is
imphcitly defined by the instrucihon

offective addross

7. Direct Indirect Indexed—(d),y
This address mode is often reforred to as indireclY. The second
byle of the instruction s added to the Direct Register (D) The 16-bit
contants of this memory location is then combined with 1he Data
Bank register to form a 24-bil base address The ¥ Index Registar s
added to the base address 1o lorm the effective adoress

Inatruction: | opcode | offsat

Direct Register |

* | offsaet |
| il | direct addrass |
fhan
[o0 | (direct address) |
«| oem |
| base addross |
+ | _ | ¥ Reg |
Operand |_ |
Address: atfective address
8. Direct Indirecl Long Indexed—[d],y

With this addressing mode, the 24-bil base address is pownted 10 by
the surn ol the second byte of the instruction and the Direct
Register The etfectve address is this 24-bd base address plus tha ¥
Incten Register

Instruction: | opcode ullnL_-
| Direct Rogater |
- | otsat |
[oo | direct address |
than
| (direc! address) !
+ | ': ¥ Reg
Opecand | I
Address: effeciive address

9. Direcl Indexed Indirect—(d,x)
This address mode is ofien referred 1o as Indirect X The second
byte of the instruction s added to the sum of ihe Direct Fegister
and the X index Aegmster The resull points (o the low-order 16 bits
of the effectve address The Data Bank Register contains the high-
order B biis of ihe eflechive address.

p—

offset

| Direct Register
.

|

I
offset |
| direct address |

I

L | E X Rag
| o0 | address |
then:
| o | {address) |
+| open |
Oparand
Address: | effective address

10. Direct Indexed With X—d.x

.

The sacond byte of ihe instruction is added 1o the sum of the Direct
Aegister and the X Indax Registes to form the 16-bit affective
sddress. The operand is always in Bank 0

Instruction: | opcode offsst

| Chrect Ragistar |
. |
| direct address |

xReg |

offser |

v i
Operand
Address: |

i3] | eflacive address |

Direct Indexed With Y—d.y

The second byie of the insiruciion = added [0 the sum of the Direct
Aegister and the ¥ Index Ragister to form the 16-bit effective
address The operand s always in Bank 0
Instruction: § opeoda olfset
| Dirnct Ragisier |
. | otser |
| direct address |
.| | vheg |
Operand
A::ulc |

1] | olfective address |

12. Absolute Indexed With X—a,x

The second and third byles of the instruction are added 10 the
X Indax ister to dorm the low-order 16 bis of the effective ad-
dress. The Data Bank Register contans the high-ordar 8 bits of the
effactive address

Instruction: [opcode | addrl addrh
| oBR | sdan | addr |
.| | xReg |
Operand | |
Address: electve address

13. Absolute Long Indexed With X—al,x

The sacond, third and Towrth bytes of the instruction form a 24-bi
base address. The eflective address is 1ne sum of this 24-bit address
&nd 1he X index Aegister

1.

15.

16.

17.

lnnlnlallam[ocpcode | addrl addrh

| [
addrn | adan |

.

i |

Operand

Address: | sifeciive address |

Absolute Indexed With Y—a,y

The second and third byles of the instruction aré added 1o the
¥ Indax ister to lorm the low-order 16 bits of the effective ad-
dress. The Data Bank Aegister containg the high-order B bits of the
atfective address.

Instruction: [opcode | addrl | addh |

| osrn | adarn | a;san |

+ | vreg |

Operand || |
Address: eflective addrass

Program Counter Relative—r

This address mode, referrad (o as Relative Addressing, is used only
with the Branch inatructions. If the condstion besng lasted is mat,
the second byte of the insruction is added to the Program Counler,
which has been updated to point to the opcode of the next instruc-
tion. The offsel is & signed B-bit guantity in the range from -128 io
127. The Program Bank Regisier is not affected

Program Counter Relative Long—ri

This address mode, referrad to as Aelative Long Addressing, 15 used
gnly with the Unconditicnal Branch Ly instruction (BAL) and the
Push EHective Aelative instruction (PER). The second and third
wyles of the instruction are added (o the Program Counter, which
has been updated to point 1o the opcode of the next instruction, With
the branch instruction. the am Counter is loaded wilh the
resull. With the Push Effective Relative instruction, the resull is
slored on the stack. Tha offset is a signed 16-bil quantity in the range
from -32768 1o 32767 The Program Bank Aegister s not atiectad

Absolule Indirecl—(a)

The second and third bytes of tha inatructon form an address o a
posniarin Bank 0, The Program Counter s loaded with th first and
second bytes al this pointer. With the Jump Long (JML) instruction,
the Program Bank Aogister is loaded with the third byte of the
poiniar

Instruction: | opcode | addrl | addrh |
indirect Address= | 00 | addm | aden |
New PC = [indirect address)

with JML
Mew PC = (indirect address)
Mew PBR = [indirect address +2)

Direct Indirect—(d)

The secand byte of ihe instruction is added 1o the Direc! Register 1o
{@rm & painter 10 the low-arder 16 bits of the effective address. Tha
Data Bank Regisiar contains the high-order B bits of the efactive
address.

P—

| Direct Register |

- | altsal |
| od | direct address |
than
| o0 | (airect address) |
+| opem |
Operand I
Address: | affective address J

Appendix 2 481

19. Direct Indirect Long—([d]

The sacond of the instruction is added 1o ine Direct Register o
fosm a painter 1o the 24-bi eflective address

Instruction: | opcode m

| Diract Regstar
i | ofmset |
| Lii] | direct address |
tharn
Operand
Addreax | |ditect addrens) |

20, Absolute Indexed Indirect—{a,x)

Tha second and third bytes of Ine instruction are added to tha
¥ Index Register to form a 16-bil pointes in Bank 0. The contents ol
this pointer are loaded in the Program Counter. The Program Bank
Register i\ not changed

Inl.lnndarr.| opcode _1 addrl

T
-l

addeh | agdn |
{

| PEA Address |
than
PC = |address)

21. Stack—s

Stack addressing refers 10 all instructons thal push of pull dala
from tha stack, such as Push, Pull Jump to Subroutine, Return from
Subrouting, Interrupls, and Return from Inlerrupl. The bank ad-
dress s always 0 Interrupt Vectors are always fetched from Bank 0

22. Stack Relative—d,s

Tha tow-order 16 bils ol the effective address is formed from fhe
sum of the second byte of tne instruction and the Stack Pointer The
hrfh-mder&mllufIrles"m:tweaddrm s always zera The relative
oifset is an unsigned B-bit quanily in the range of 010 255

Instruction: | opcode | oflset |

| Stack Pointer |

. | ottser |

Operand
| o0 | affective address |

482 Appendix 2

23. Stack Relative Indirect Indexed—(d,

The second byte of the instruction 8 added to Stack Pointer to
form a pointer (o the low-order 16-Dit base address in Bank 0. The
Data Bank Aegister containa the high-order B bits of the base ad-
dress. The effective aodress i the sum of (he 24-bil base address
and the ¥ Index Regier,

instruction: [Gpcoss | orisei |

| Stack Pointer |
* | offsat !
| e | 5 « alfset |
than

| S + attset |

+| per |
| Base acddress |
. | i vreg |
Opsrand i o i
| slfective address I

24, Block Source Bank, Destination Bank—xyc

This addressing mode is used by the Block Move instructions. The
second byle of the inslruction contains the high-order 8 bits of the
destination sddresa. The Y index Aegisier conlains the low-order 16
buts of the destination addrass The third byte of the insiruction
contains the high-ordar 8 bits of the source address. The X Index
Fegistes containg the iow-ordes 16 bits of the source address. The
C Accumulalor contiing one lass than the number of bytes 1o move
The second byte of the block move instructions is also loaded info
the Data Bank Aegister

Instruction: | opcode | dstbnk | srcbnk |
dstbak - DBA
Source
Addreas: | srebnk | % Aeg |
Destination
Address: | oen | ¥ Reg |

Increment (MWN) or decrement (MYF) X ang ¥
Decrement G (if grealer than zers), then PC+3 - PC

INX
WY
JML
JMP
JSL
J5R
LOA
LDX
LOY
LSA
MVN
MR
NOP
Ofa
PEA

PEI

PER

Table 2. W65CB02 and WE5CE16 Instruction Sel—Alphabelical Sequence

Agd Mamaory o Accumulator with Carry
‘AMD Memory with Accumulaior

Shift One Bit Left, Memory or Aceumulaior
Branch on Carry Clear (Pc = 0)

Hranch on Carfry Set (PC = 1)

Branch i1 Equal (P2~ 1)

Hit Tesi

Branch if Resultt Manus (Paos 1)

Branch il Mot Equal (Pz - D)

Branch il Aesult Plus 1Py = 0)

Branch Always

Force Break

Branch Always Long

Branch on Overliow Claar [Py = 0)

Branch on Qverflow Set [Py = 1}

Cilear Carry Flag

Clear Decimal Mode

Cigar Interrupt Disable Bil

Claar Overliow Flag

Compare Memory and Accumulalor
Coprocessor

Compare Mamory and Indes X

Compare Mamory and Indes ¥

Decrement Memaory o Accumulater by One
Decrement Index X by One

Decrement Indes ¥ by One

“Exciusive OR” Memaory with Accumuiator
Incremant Memaory of Accumulator by One
increment Index X by One

Increment Indes ¥ by One

Jump Long

Jump to New Locatian

Jump Subroutine Long

Jump to Mew Locaton Saving Return Address
Lead Accumulaton with Memory

Load Index X with Memaory

Load Index ¥ with Memory

Stuft Qne Bil Raght [Memary of Accumulator)
Block Move Magalive

Block Move Positive

Mo Oparation

QR Memary with Accumulator

Push Effactive Absalule Address on Stack (or Push iImmadiate
Data on Stack)

Push Effective Indirect Address on Stack (o Pysh Direct
Data on Stack)

Push EMfective Program Counter Relalive Address on Slack

For aliernale mnemaonica, s#& Table 7.

PHA&
PHE
PHD
PHH
P
P
PHY
PLA
PLE
PLD
PLP
PLX
PLY
REP
ROL
ROB
AT

TSX

XY
TYA
TYX
WAl
WD

XCE

Push Accumulator on Slack

Puan Data Bank Aegisier on Stack

Push Dsrect Registor on Slack

Push Program Bank Asgister on Siack

Push Processor Stalus on Stack

Fush Index X on Stack

Push indes ¥ on Stack

Puli Aceumulator fram Stack

Pull Data Bank Regisiar Irom Siack

Pull Direct Register from Stack

Pull Processor Status rom Stack

Pull Ingdex & from Stack

Pull Index ¥ form Stack

Resel Status Bits

Aotale One Bil Lalt [Memory or Accumulator]
Aotate Cne Bil Fight {Memaory or Accumulator)
Roturn fram Interrupl

Aeturn from Subrowhine Lorg

Aeturn from Subiouting

Subtract Memory fram Accumulator with Barrow
Se1 Carry Flag

Sot Decirnal Mode

Sel interrupt Dhsable Stalus

Se1 Proce or Status Bite

Store Accumuiaior in Mamary

Stop tne Clock

Stone Index X in Mamary

Store Index ¥ i Mamary

Store Zero in Memory

Transler Accumulator 1o Indes X

Transfer Accumulator fo Indes ¥

Transfer G Accumulator io Diect Regster
Transfer C Accumulator fo Stack Painler Register
Transter Direct Register to © Accumulabos
Teal and Resat Bit

Tes! and Set Bit

Transler Stack Poinler Register 1o C Acoumulator
Transler Stack Fointer Ragister 1o Index X
Transler Index X 10 AcCumulator

Transler index X to Stack Pointer Registar
Transter Index X 10 Index Y

Transter Index ¥ 10 Accumulator

Transter Indes ¥ 1o Index X

‘Wail lor Intarrupt

Raserved lor Fulure Use

Exchange B and A Accumuliior

Exchange Carry and Emulation Bits

Table 3. Vector Locations

E=1

DOFFFEF —IAQVBAK Hardware/Saltware

OOFFFC,D—RESET Hardware
DOFFFAE —NMI Hardware
COFFFAS —ABORT Hardware
COFFFET —|Heservad)

OOFFF4.5 —COP Software

E-0
OOFFEEF —IRG

Hardware
OOFFEC, D (Ressived)
OOFFEA B —NMI Hardware
OOFFEES —ABOAT Hardware
QOFFES,7 —BRAK Saftware
OQOFFE4.S —COP Softwara

Tha ¥P gutput 1s low during 1he fwo cycles wssad for veclor localion actess.
When an interrupt s executad, O = 0and | « 1 |n Status Register P

Appendix 2 483

Table 4. Opcode Ma

M M
5 &
o LSO o
o ' 2) 4 5 8 7 L] L) A B c o E F
o|BAKs [ORA () | COPS | CALds | TSBd | OAAD | asLa | ORA (D] | PP ORA W AL aferos TsBa ASLa | ORAm|
28| 28 2% 2% | Sal T T 2% | v a3l 22| 2]vYe| 2% 16| 4%s

1 [BFLY |ORA (dyy |ORA a)| ORA d.sly| TRE @ [ORA d.x ASL 2.0 dﬁa}m CLC ! (ORAay| INCA|TES)| TRBa
32 28 2%y i"s |24 (28 2% [1 2| 34| 1%2|1%2| a%s

2 [45Ra | AND 18 H5Lai | ANDds | BITd | ANDd | AOL G AMDIO] | PLPs | AND # |[ROLAIPLDs| BITa
L] 26 a«®a 254 22 23 8 %6 14| 23|t 2[r%s] 34

ASL a.n| DRA al o
T :t.':

ROL a | AMD &l
36 INPE

3 BMI s | AND (diy [AND (d) mﬂkﬂ-ll.r BITds (AND @ |ROLdx ANI:IJ:I],y SEC | (AND ay DeEA 1'55'.1 BITax | AND & | ROU ax| AND al o 1
2 2 25 2% ¥y 2% | 24 |2 @ F il 123 ¢ |[1%2)|1%] 3% 34 1T | a¥g
4 |ATIE |EOR(dx) | WOM | ECAas |MVPayc| EORG | LSAd | EDA[d] [PHAS| EOR S |LSRA FHs| JMPa | ECAa [LsRa | Eopal|
ir 26 ™2 %4 a*r a2 iYE 1 3] 22 | va[r*s] 32 34| 28] 4"s
5 |BYC T |EQR)y |EOR (a)| EOR i)y MV yc|EOR dx |LSAd | EORJaly | CLl| (EOR ay| PHY s |TCD: dMp sl | EOR &.x | LSA ax| EOR AL
2 2 ? s 2%5 2%y A"y |ie|as 2% | v 2] aa 1% 1 ®a] 4™ a4 | 3y | %y
g |ATS3 [ADC a5 | PER® M:I!id.l 5T2d | ADCa |AROAa A1:|42|n| PLA® | ADC # |ACA A HTJ,; JMP (a) | ADCa | AOA & .iDEll &
L] 28 3% 2% 2% |2 a |2 s 2%s P al22|rva|[r*s| a5 34 | ap| a%s
BYS 1 [ADC (d).y |ADC (o) [ADC [dsl.y| STZ ds [ADC a.x POA 08| ADCjajy | SEVI |ADCay| FLY 8 |TOC | | JMP 1281 ADC a1 | AOH a,x i, %
e s et o g et e RN N R e e B i s
g |BAAr [STATdx | BRLA | STAds | STYd | STAG | STia | STa[o] | DEY. | BT | Taa, PHBs| STYa | STAa | STaa | staal|
2*2) 2w 1%a | 3% 23 |2a3]2a 2% v z%z |1 2[1%5]| 3 4 34 | 34| avs
g |BCCr [STA jdjy | STA (o) Sflg.ll.; ST¥ da |ETA du BT dy STAJI'-!].'(TYA| |STAay| THSI TEYS| STZa | STAaa |STZax| STAalx ?
2 2 76 2"s %7 24 |24 |24 2% t2las |y ®2f a®a 35 | 3%5 | 4%
a|LOY®|LDA(@x) | LDXW | LOAGS | LDYd | LDAG |LDKe | LDA[d) | Ta¥) | LDAS | TAX) PLBs| LDYa | LDAa | LDXa | LDAa| .
2 2 28 ? 2 a%a I ENEERNER 2%e 122z |1 2[1%a| 3 a 34| 34| a¥s
g |FCSr [LDA (diy |LDA (dy LOA a8y | LDY dx |LDA ds |LDX dy LDataly | CLVI LDA Ry | TSX: |TYX | | LDYasx |LDAax(LOXay LDAalx o
22| 28 2%5 %7 24 |24 |72 2% v a3 v a|1¥2]| 3 s 34 | 34| &My
¢ |SFY ¥ |CMPida) | REFS | CMPas | CPYo | CMPd |DECa | OMPd] | iNvi | CPe | DEXi [wali| CPYa | CMPa | DECA CHMPal| o
22 & 2%3 ¥y 2a |23 |&s 2% a2l e |vefi®a] 3 a 34 | 36| a*s
o BME r |CMP {dhy |CMP {d) CMPid,lJ,r "E‘ CMP d,x JDEC d CMF-IUH CLO i |CMP ay| PHX 8 |STP .mk[.;, CMP ax |DEC a,x| CMP a o o
22 P] %s 2%y ™6 |24 |2 8 2%8 (1 2| 3 4| 1%"3 1% a%e 34| T
g |CPX® |SBC (ax) | SEP W SBCas | CPxd | SBCo | INCd SHC[d] | NN (| SBCw | NOP, XBAI| CPXa | SBCa | INCa sBCal| o
22 26 an3 2% O] 2.3 |24 2%6 121 22 |1v2(i"al a4 34 18| 4%s
¢ [BEGr [SBC joly |S8C 4d) SEC {dsly | PEAs [S8Cda |INCda SHCjdly | SED | |SBCay PLX s |XCE: SR a) SBC s | INC ax | SBCale |
2R 25 2%s gk Aa%s | 24 |2 8 Y- v 2 a | % ®a e 3d | AT | avs
[] 1 2 3 4 5 & L [] 8 A B c o E F

symbol | addressing mode symbol | addressing mode
L ammatiabe L] cirect indirect kang
L) sccumulator [aly diract indirect lang indexed
r Program counles relalive a absoiute
" Progeam coumes relative lang an absokite @ daead fwilh)
' il ny AL indased [wilh ¢}
s ack o abaaiuite long
-] rech [] atdolule long mdesed
dx derect inoesed |wit 2| a8 atack reladive
dy direct ingaxed (wih yi [{-R 1% atack mladive indireci indesed
idy dirmct indetect 1] ansolise indirect
id=) direct indexed indirect las) absolie indesed indirec)
dhy direct indirsct indesd myC ok mave

Op Code Malrix Legend

INSTRUCTION ADDAESSING
MNEMONIC w - Now WESCH16/802 Opcodes MODE
* Now WESCO2 Optodes
BASE Blank = NMOS 6502 Dpcodes HASE
NO. BYTES NO CYCLES

484 Appendix 2

Table 5. Operalion, Operation Codes, and Status Register

e] s = STATUS CODE MNE-
s _i.ng = 3 TR § 433 10| MOwWG
ofofafe|e|-|2l2|5 |32 elzlElE|d|- |t E e
QFEAATION I EAERE s [r]a]a]jmin]g e 1w]ar fen |18 o 20 W [(M[w v 1 8BD0D 1 I CJE:
WOC | AWML oA A EAE] IR i [81 El G T c| anc
hMD RA ECREIELE IREIARFIRE] o Aty 1 L z AND
A5L g- [3 q -0 aE o[04 ' 1€ ~ Fa- ASL
BCC L L] BCC
BCS BRANCH IF G« 1 B3 BCS
BEQ AMCH (F T -1 L] BED
BT AAM (ROTE 1} s | 7 M ™ 3G A, z BT
BMi BRARCH “1] s
BHE BIARCH F 2 0 o BHE
BFL BRANCH IF M+ 0 | 9 APL
BRA BIANCH ALWAYE B0 o Bia
BAK BREAN |MOTE 3 L e BRR
BAaL BRANCH WAYE i & BRL
BYE BRANCHIF v =0 a0 o
BvS BRANCH F ¥ = 1 o [T
CLE -G L] [oLe
Ll o-o o8 L L
L -1 -] -] Ll
Cik¥ o-v aa o Ly
=1 A-b)CW| CO| CF | T8 o |DrfCrf D8 OF | D@ o2 |C7 o3 L] - CMF
CaP Co-PROCESSOR 02 B 1 ® COoP
oRa n-w EC | EC Ed L] -G CPH
oPY - IC0|CC ca L] L8 cEY
DEC DECHAI CE| Ch |3 o6 = z DEC
DEx x-1 {ca o z DEx
DEY LR] H z DEY
EOR o 4% | 4| aF | 48 At o [58 aF | &9 a7 | ar 53 H z EDR
INC HECA EE EB | 1A B N L THE
INE Ko E8 n I IHX
[¥ =] N z IN¥
ML FJMP LONG TO NEW LOT =8 . e
AmP SUMP TO MEW LOC 4C(5C BC 1= Jb
A5 JUMP LONG TO BuB & 8L
JSR JUMP 10 508 am FC 48R
LOa oA g | Al AF | A5 @ @1 &) Bs iF | B8 B3 [T Bl N 4 LD
[] A2 | AE A6 B LT} N z LOK
LO¥ MY AL AL a4 B4 BC N F3 woy
LEA o~ [BT B -C Ak a6 | ik w5 s [} N L5R
(Tl - M NEGATIVE sa)
Ve - W POSITVE a4 * WP
HOF Eh . NO#
Rk mmr&nmnu o8| 0o} oF | 08 an|arfm | |l 2 |or n M] oA
s Mg+ 1 MpE < 7 WA - § ey [} - FEA
5-7:%
RE I;ms [T R RR R =] PEI
-3 -5
PER L R =l L]
§.2 -5 |
Pk | A-waG 1 -4 & AA
Frl DBA -~ My, 5 -1 <5 | g =HE
] D-MaMy-15-F -5 o8 CRT
Pk PEA - My 51 - a8 i e
PHP] | o PHP
PHR] O s PEE
T V- e S o n Py
PLA g1 -8 o] z FLb
FiB S:1 -8 B N i |« A
L0 5+1-5 28 ~ z |« Mo
PLP §-1~-58 WHYymino| ZC PLP
2: Bl -8 :: N z Ly
¥ - 5, - N z LY
REF L k= NoWMED I ECw REPR
vo | tera o2 | |mon » " zc| o
o | et | | || i " T
AT RTAN FR a0 MYymMaDiZIC "1l
atL RTAM FAOM SUB LONG il & ATL
At RTAN 5 TInE | &0 ATS
SHC AWML euf £D| Er | €8 Foler|o|es ke | P Fa | €7 &l oW LG SBC |
SEL t-C 34 ! SEC
SED0 t-0 FB i SED
SE| L]] " 5]
SEP [E2 NWMXDI I Of# S50
ETA A ao|eF | es (o |or| Al s ¥ W war L] BTA
5TF STOR |1 = g2f (ak:] ‘e 5TF
5TR X o ni B 5TH
STV ¥ oM &) B aTY
b1 oo - W 8T (2] L » STI
TR A -K A M [Tax
TAY AT AR N F AT
L] C-D 58 H z [« TCO
1C5 c-5 iE} * TCS
ToC 0-G 8 n Z |® TOC
RS W i Z |m AR
T5B ;wc-u [5 - " B i : TEH
TSC . 156
THX & -n gﬁu L] z TSx
T n-a ﬁ N z TRA
Ta% a -5 TXE
Tay = o L] Fi CHRETS
TR Y- b L THA
Tok ¥ -x ﬁ w z * Tyx
Wl [g R
WO | WO OPERATION (RESERVID) * WOW
nfuh B L & [* xBA
XCE G=E EE El# &CE
Sesbek 1w Pepwr WBLCH &R |RaTLChoNe + Addg v OF
b Bl mmedie Noand ¥ Nags not afbecied denan Mo D Mgy o N s Mg W o Sw WOSCDD natiuchons - Bubiract ¥ Exchumn (81
2 Bigra « NMOS G562 A AND

Mirean B (B oo Siatuy regraind hhCabes PardeEe

of suitwiss Dl

Appendix 2

485

Iemmediaie
O, S, PR L O A, El
i

4O Gy

12 e § e

R 3 eyl

1]

FITETY ST LDV
CPY.CPLETE DN,
DRAANDEQR ADC
SBCH

prue

4 anat & ey
T Apaoidie 7MW e

(RGPl L 5H ADH
BIEC INE T5B TR
18 O Comwsy

i

12yt I
(LE LR] m

T T S T

s AnsonIE Long

14 e i) i

¥l Asegise Long | LW e
LIWEY

-
"
-
o
>
el T L e JUE

Wi Absciuie Long dlump g

ia Doperd
T ANE ST LD
Cre ATELON [E]
CRAAND ECR &30
ETA LTA CWR S0, i
¥ Op Codes)
o wwn
18 AR S Crow)
ar Dt ohom W)l
CASL RO LSR ADH

Feg - cEe T

|
n
3
f
]
Fl
L
B
pup-

AT any e

5 Atourtile &
bl INC 0L DEC LSREBDA|
18 O Coxiniy
it vy
| cpeie

-

aCE T ws
Fam 150 FCE TELTCD
TOE Ta¥ TRRCLE ALL
G4 581 Coaw Co0 SEDY
@4 Qv Code|

0 e

L T

o b i Pl i
frr

11 Op Cosmi
11 wvin —
] =T

= fa Beap-Tme-Cigrh
TR '
0 Op Goaw) = ¥
1 By M1 1
] Mo u

wEo e
M
Sem Jta Since '

(HRIT 1B |

486 Appendix 2

i

e e e e i e e R

s BEEaG. -

i
L]
[

-wB@ -

N

SCEEE s ~ADOO. e Ea -

B e o@-OD—

= o=

BT LT T

- -CooOSD---

= g

EoE-- —OD-=E—-—-—

os00C0OG -

-

LI

Table 6. Detailed instruction Operation

BERRT
PEAPCH
PR PO T

R
Lo LN =)
AT

R Ak
DER AK- Y

il

FBR AT
00-00
a8-00-
0000+
ooemgs
0000
PEA P
EAR RO

PER PC
[

Oy Code
(=8

R

Np
i

5 Cos

O Lo
=

o
HQiBAL
O Cooe
L

=
AL B
L
el L
BiG

EYCLE WE, B VDA VP4 ADDSESS BUS DATABUS AW

§
[
a
a
[
]
"
]

ADDREEE MODE

vt inchvnec Incmusst i,y
ICIFRA L] LDA ADC.

ST LDA CWESIE)

18 Oyl G |

17 ytem)

156.F w8 cpciend

ICAAAND EDR ADC
GTA LDA CAaR BHC|
18O Coen|

By
et B oy

Clesact incmued indoeci jdx
ICAAANDEDR ADLC

GTA DA CRIPRGBC|

188 Cooen)

13)

(87 and B cycim)

BT ETEET v LDV
OFMA ARD EOR ADE
STALOA LR ABC)
191 O Codeny

o wymmn

vl i end Bcycie)
hact XiF - s
kG Pl L SR ADA
DEC N

4 g Coony

@ i)

5.7 8 ana @ cyce)

Cimet ¥ dy
AATELOE

d O Coge)
e

o areg § ovs)

Azaaiie ¥ ag
L s

A8 AD EOM ADC
STA LOA CMP SR,
11 0p Coses|

13 nen

5 e b
Asautae MM 0
LAEL NOL LSA MO

i ana i ey

Aganase DA K Y
A ANL EOR ADD
GTA LA CMFSRL)

15 me & ychen)
Ammruie ¥

|LDIK A AR O ADE
5TALOA CMP SBC)

1 Oy Cooms

¥ st

185 ol Euuce)
Heigsew v

1B B Bl B BT
HLS ENE BED AR

*ily

13 piwns
18 cyrin)

Anugmuie indiiect fagp
[

11 Ou Conel
1 Bt
(e

Anamaie i e b
[FN]
E="1="18

11 e
A carie

Elewit insminct i)
(OAA D ECR ADC
APALOA CMP B0,

ey
Phlang T

iy

L]

=l

i
i
(Ll

(]

paepes pusanpasgausngu- gugneges

popum-peupus dpesabpe

rpenuna

mmmm e AL

Errmgs - cB e cr e el

' k' _______.,F

e A miis ssare= GO0O0 ==

B D - e B A8 - - - 8-

AEE@- - -—WE@- 2=28CH- ~=S=--050-

e L

-t O

OG- 0080 COO0EE0 = CO0O00-= G000H0-- 000000 -= O0ODOOG ="

L EE S EEB s BE e GOOO 00—

R i L

i
E
2§08
§is
s 1 han bl 1 ECRRRtl T Rt |

Dara
Ot
O
oa
=)
no-md AR
ARH
AAE
Ot
(=)

(T3
(==

if

§oggeeas ggoosd gprrseas
jia b dg o

Detaiow

35—~

Arre= B e OGO

£

®Fim

g

L

ADDAESS MOCE

Darmet et Loag (d]

ACIRA AN EOR ADC

BTALDA ChR SHC| (]
|8 Op Codes|

12 iyt
(LR L]
i
Ancisin Indeamt |FBiRs (R
Py
11 O Cade)
11wyl
M zy.

hpagiuty raesed indrect
14 ¥ Buteoutea indsaes
e o)

=8

11 Op Cooe|

1% byt

L

Shme (g

s o
I R AR T RES| h
14 e

1% Dyim
IF Wl W sy

L

Shach (Paah| &

(PP PPy Pl

P P P in
17 Op oot

11 oyt

13 a8 s

Sisew (Pusi 8

IPLF LA PLT P 1 PLT PLA
D

LR (L1}
17 iyl
18 el 7 sy

Sinch (Puss ENscIas
Ausosie Agare s

1K byimni el

CHCLE . WL VDA VRA ADDRESE BUS

HEW- “Pdatm. —EE AN - S ER AR, S EAEERLS S SE SRS ALY SR NARLLN s cE e promep

paun-

e

peun-® wruwwo

s sma s me - - D= S

'
i
'
"
]
]
i
1
i
1
'
'
"
W
'
W
1
'
i
'
1
1
i
'
i
'
i
[
[
¥
1
i
"
i
1
1
1
|
\
'
¥
'
i
'
i
|
'
'
'
[
'
[
]
"
[
i

B L L TR

g s A A SO e e OO - -

@B = awn =00 -

~BEE -

——EE— -

EE - -0ee@8= OO0 ~8688B#a ~G00000=s "0000E0E- 4osa@=B08== ~—-—Q-- - CAQODO -~

OE-s= g@O00=-

OEB-= 8 B8==-

Table 6. Detailed Instruction Operation (continued)

ADORESS MODE
I3 Geack Reiwiom gt

Bl 1]

(0 A%l EDR ADC

A1 LDA CHPSD0)

8O Cosel

11 e

1T wmat @ Cpetmns

]

S LS S L st s]

ML VDA, YRA AODSEES BUS DATA RS
' PC Op Cone L
PAAPC:1 S0 i
BEEBC o 1
0850 i
[EEE 28] 1
LSS T 0 i
I A
R AT

o .

» - Denlannn

& ~Musinr 4 Byies o Moy - ¥
u p Dmcrarsess

WP o ed whes 11 -1
destiratansaradaen B
B L L
b v porcm wha ki

LT

ne
&
cOEDees GEEE-—~-DE0@ =22 DoCOHB--

R ARE S B
COEss @b B0 - ~OD-DE=- 280 = =G-8

L
o -_"-1‘-..1.1-

z

3
L
e gt
P —
.

v+ Deyhraion
L L
¢ Ingrermeai

FREREE

Sowree Era -:"-_
~[Dn|| Era
Soure Skt
Do

LY

ey

ey L -
LT

e

Ceat Siart

AT) T
‘aEwEnEhon star sddie
e | g
Hhan B aouios BN
S

s T Py

mEO O -——

111 AgE ¥y dor et antgh i e 00 pop S Swia) 852 1 Cptd r WA m KD

{21 Adud b o poie tun et tegestes e (ETL] ol we

1) Somcial Eantes AD0n NG mstretan T8 e L Cysie s my D ssgriec e P Sl
P o DER g8 =4 e wpiin]

) A | PO for ingmaing ial SAQE DGuNTISNES wrae. 01 80 Whee K00 o0 e
rinal B Mt Iha CpEN CONIBNE N asdireani

{4s Moa | cpche § Biach w e

iy Akl t CpThe # EIERER 1 e RCITNS Pag Duudinm, 15 B0 st e En

1Ti Sutiragt | Cpre ior RSO0 weaabins maoae 154

|8} Add ! cycis hoi REPSER

{8 Wnet i e 2 i 3 gy wtvme T o S0 g it

O Cote i M} P e R snng Resel
g : Ansewsiatiers
AAN Arstum R0 e fans
o srovh m ¥ Ak At BSSEis g
AAL Alksiuie Addoean Lam
AayH Apspaie Addowas ¥l Hgn
sl Qo Case H AANL Albile Ao vecss Lo
PBA T l'-g‘-‘l 'I C Acsumuns
A PCE [D) Carmes Mangeater
[AL . i Drsmiamy afa I
P asn P GEF Dals Barm Ragranss
s Ak]
251 AL o
PBAPC O Code 1
PRAPT AL '
PEAPC A '
s Anss L}
o8-t AAL a
[

e Low 1

Oifpan gh 1

L] 1

PCHAOEEs D

v

PCL-OFFSET D

Cip T !

%0 1

L] v

Dat o= 00
08+50-1 = e L

Appendix 2 487

Recommended WE5C816 and WE5C802 Assembler
Synilax Standards

Directives

Assembler direclives are those parts of the assembly language source
program which give directions (o the assembles, this includes the delin-
‘tion ol data area and conslants within a program This standard excludes
any definiions of assembler directives.

Comments

An assembler should provide a wiy 10 use any ling of lh'|uur|;eprogralr|
as acomment. The recommended way of doing this |5 1o treat any blank
lime, or any line that starts with a sami-colon or &0 asternsk 88 8 comment
DOther spacial characters may be used as well

The Source Line

Any ling which causes the genaration of 8 single WESCH18 or WESCBO2
machine language instruction should be divided into four lields a labal
field. the operation code, the operand, and the commaent field

The Label Fleld—Tne label feid peging in column and of the line A labal
miust SLArT with an alphabelic characier and may be lollowed by zeroor
moré slphanumenc characiers An assembler may define an upper limit
on the number of characters that can be in a |abel, so long as ihat upper
limit is grealer 1nan or equal 1o six chargclers An assembler may lim
the alphabetic characiers io upper-case charactess il desired I lower
case characters are allowed, they should be treated as identical to their
upper-case eguivalents Ciher characters may be allowed in the labal, 50
long as their use does not conilict with the coding of operand fields

The Operallon Code Field—The operation code shall consist of a three
charactes sequence {mnemonic) from Tabie 3. [Tshall siart no sooner
than column 2 o ihe line. or one space afler the label if & label is coded

Many ol the operation codes in Table 3 have duplicate miemonics. when
two of more maching IBNGUAGE INSITUCHONS NEve INE SAME MABMONC,
the assembler rescives the dillerence based on 1he cperand

I an assembier allows lower-case leiters in labels, it must also allow
lower-case lefiers in ihe maemonc. When lower-case letters aro usod in
the mnemanic. they shall be treated as equivalent to the upper-case
counterpart Thus, the mnemonics LDA. Ida, and LdA must all be recog-
nized, and are squivalent

Ir @ddilien 1o the masmonics shown in Tabe 3, an assembler may pro-
vide ihe allernaie mnemonics shown in Table &

Table 7. Alternate Mnemonics

Siandard Alias
8CC BLT
BCS BGE
CMP A Cha
DEC A DEA
INC A INA
J5L JSR
JML JMP
TCD TAD
TCS TAS
TDC TDA
TSC TS5A
Kpa SWwa

J5L should be recognized as equivalent 1o JSA when it i specilied with a
long absolule address. JML (s eguivalent 1o JMP with long nddressing
forced.

The Oparand Fishd—Tne operand ligld may s1ar no sooner IBAN one
space after ihe operalion code lield. The assembler must be capable of
Al least twenty-lour bil address calculations The assembler should be
capabile ol specilying addresses as labels. integer constants, and hexa-
decimal constants. The assambiler must allow addition and subtraction
in the oparand figld Labeis shall be recognized by the fact inal they star
alphabetic cnaraciers. Decimal numbers shail be recognited as contain-
ing only ihe decimai digits 0 3 Hexadecimal constants shall be recog-
nized by prefizing the constant with a “§ character, lollowed by 2ero or
marg of aithar the decimal digits o the hexadecimal digits “A". "F" I
lower-case etters ané allowad in he label field, then they shall also be
allowed a8 nexadecimal digits

488 Appendix 2

All conslants, no matlas what theer format, shall provide at least enough
praciman to spedily all values thal can be represenied by a twenly-four
it signed or unsigned integer represented in two's complemant natation

Table 8 shows the operand lormats which shall be recognized by the
assamiler. The symbol d (s & label of valus which the assembler can
FECOQnIZe &S being less 1han $100. The symbol ais a iabal or value which
the assembler can recognize as greater the SFF bul léss than $ 10000, (he
symbod sl 18 8 (abel or value thal 1he assembler can recognize as being
greates than §FFFF. The symbol EXT is a label which cannod be (ocated
by ihe assembiler ai the fime the instruction s assembied. Uniess in-
siructed otherwise, an assemblor shall assume 1hat EXT labals are two
bytes long. The symbals rand ri are 8 and 16 bit signed displacements
calculated by 1ne azsembier

Maote that the operand does not determine whather or nol immediale
addrassing |cads ane or fwo bytes, this is determined by the satting of
1he statua register This lorces the requirement or a directive or directives
ihat tnil the assembiler to genarate one of two Dyles of space 1o imme-
diate loags. The directives provided shall aliow separate setlings for the
BCCUMUIBIDT BRd Index regislers.

The assemblier shall use ihe < = and & characters after tha & character
nimmeadiate address o specifly which byle or byles wili be satected lrom
the value ol the operand. Any caiculations in tha oparand must be par-
formed belore the byte sefection takes place. Table 7 defines the action
taken by each oparand by showing 1ne effect of ine operalor on an ad-
dress. The column tnat Shows B two Dyle immediaie vaiue show he byles
i1 the ofger in which thay appear i memory. The coding al the operand
18 1or an assembler which wses 32 bil address calculations, showing the
way [hat the address should be reduced to a 24 bit value.

Table 8. Byle Selection Operator

Oparand Dne Byle Resull Twa Byle Aesubl
#$01020304 04 04 03
< SO 100304 o4 o4 o3
501020304 o3 o3 oz
" SD1020304 oz o o

Inany location inan operand where an address, or exprassion resulting in
an addrass, can be coded, 1ne assembier shall recognize the prafiz char-
acters - |, ana =, which force ong Dyte (direct page), two byle (absoiule)
or Inree byle (long absolule) agddressing 10 cases whare the addressing
mode i not lorced, the assermbler ahall assuma that the address is two
bytes uniess the assambler is able fo determine 1he type of addressing re-
quired by context, in which casa thal addressing mode will be used. Ad-
dresses shall be runcated without error i an addressing mode is lorced
which does nal require the entire value ol the address For example,
LDA 50203 LDA [50102003

are completely equivalant. |1 ihe addressing mode is not lorced, and the
1ype of addressing cannot be delermined from conlexi, the assembler
shall assume ihat 8 two byle address @ (o be used |Taninstruction does
nof have a short addressing mode (as in LDA, which has no direct page
indexed by ¥ | and a short address is used in the operand, the assembler
shall aulomatically extend the address by padding the most significant
Diyles wilh 2aroes in order lo extend 1he address 10 Ihe lengin neeosd. As
wilh iMmedate B00iessing, BNy Exprésson evalualion shall take place
baetlore the address is selected. 1hus, the address selection characler is
only used once. before the address of expression

Tha | jeeciamation point) character should ba supported a5 an alternative
to the | (vertical bar

Along indirect address is indicated in the operand feld of an instrucbion
by surrounding ihe direct page acdress where ihe indirect address is
Tound by square brackets, direct page addresses which contain sixteen-
bit addresses are indicaled by being surrounded by parentheses.

The cparands of 4 block mowe instruction are specified as source bank,
destination bank —the opposite order of ihe object byles genaraled

Commant Flsld— I'ha comment field may S1ar no sooner Ian one Space
afer ihe oparation code fiakd or operand lield depending on mstruction
type

Addreasing Mode
Imimediate

Apsolute

Absolute Long

Direct Page

Accumulator

implied Addrassing

Criract Indirect
Indaxed

Direct indirect
Indexed Long

Drect Indexed

Indirect

Direct Indexed by X

Diract Indexad by ¥

Anaolute Indexed by X

—d

=])

=1

al

=EXT

d

<d

<a

<al
<EXT

n

{no operand)
fd).y
{=d).y
(<aly
I=al.y
[<EXThy

<alx
<EXT.x
dy
=dy
<ay
<aly
<EXTy
[-E]

ld,x

ax

fax
lalx
'EXT.x
EXTx

Table 9. Address Mode Formals

Addressing Mode
Ansolute indexed by ¥

Absolute Long Indesed

by &

Program Countar
Aglative and
Pragram Counter
Relative Long

Absolute Indiract

Direct Indirect

Durect Indiract Long

Absolule Indexed

Stack Addressing

Siack Relative
Indirgct Indexad

Biock Move

Mote: The alternaie | (exclamabion paint) & used in place of the | (verbcal barp

rand)

(]

3l

{'a)

{'al)
|EXT)
id]

[y
1=al}
[<EXT)
a1

[<a]
[=ai]
[EXT|
{d.x}
{ld.ay
(R
[t}
|tal =)
(EXT x|
(EXT.x)
{no operand)
(,8h,y
(sl
{=asly
{=als)y
|-~EXT.s).%
a.d

o.a
dal

o EXT
Bd

aa

aal
a,EXT
ald
ala
al,al
alEXT
EXT.o
EXT.a
EXT.al
EXTEXT

Appendix 2

(1me assempler calculates

489

Table 10. Addressing Mode Summary

Mamory Utliization
Instruction Timea in Mumbaer of Program
In Memory Cycles 4 Byles
Original MHaw Original Haw
Address Mode BB HNMOS WESCHIE BB NMOS WEECHIE
8502 8502
1 Immediate 2 2m 2 FIE]
2 Absolute 4isi FEET a 3
3 Absolute Leng = 53 — i
| 4 Direct am R) F
5 Accumulalor 2 2 1 1
6. Impled 2 2 1 1
7. Direct Indirect Indexed (d).y 5ii) 50134 2 2
| B Direct Indirect Indexed Lang [d], y - | B - 2
9 Direct Indewed Indirect [d,x} 8 I B4 2 2
|| 10, Direct. X A &340] 2
11 Direct. ¥ 4 4ia4) 2 2
12 Absoiule, X | i18| FHELT 3 3
13 Absoiute Lang, X | = 51 = 1
14 Absolute, ¥ aih 4103 3 a
15 Relative 20 20 2 2
| 16 Reativelong - ElE] = 3
17 Apsolule Indirect (Jump) 5 5 bl 3
18 Direct indirect = Hi2dp — 2
19 Dhrect indirect Long - BiLa) i 2
20 Absolute indexed Indirect |Jump) - B - 3
21, Seack -7 a8 1-3 1-4
22, Stack Relatve - 4431 A 2
| 23. Stack Aelative Indirect Indexed - 7 = 2
|_ 24, Biock Move X, ¥. C (Source. Destination, Block Lengtn) l = 7 =z 3
NOTES.

1. Fage boundary, a0d 1 cycle if page boundary s crossed when torming address

2. Branch taken, add 1 cycle i branch is taken

3 M= Dar X =016 bil operation, add 1 cycle, add 1 Byle lor immediate
4. Direct ragister low (OLLnot equal zero, ada 1cycle

5 Reag-Modily-\Write, add 2 cycles for M = 1, add 3 cycles far M = 0

490 Appendix 2

Caveals and Application Information

Stack Addressing

wihan in tha Native mode, the Stack may use mamory locations 000000
to OOFFFFF. Tha aftfpctive address of Stack, Siack Relative, and Stack
Asdative Indirect Indaxzed addressing modes will always be within 1s
rangé. |n the Emulaton mode, the Stack address range (4 000100 1o
OO01FF. The following opcodes and a0dressing modes will increment or
decrament beyond this range when ACCessing two oF three Dyles

J5L, J3Aa.x), PEA, PEI. PER; PHD: PLD; ATL: d.s. (d.sly

Direct Addressing

The Direct Agdressing modes are often used o access memary régisierns
and poenters, The effective address generated by Direct, Dwect, X and
Direct¥ addressing modes will always ba in the Matve mode range
00000 to DOFFFF. When in the Emulation mode, 1he direct addressing
range is 000000 to DOOOFF, except for [Direct] and | Direct],Y addressing
mades and the PEI instruction which will increment from D000FE or
GOO0FF ina ine Slack area

When i the Emulaton mode and OH 15 not equal to zerg, 1he direct
agdressmg range & 000H00 10 00DHFF, except for |Direct | and [Direct].Y
addressing modes and the PEl instruction which will increment fram
OODHFE or DODHFF mnto the next higher page:

‘When in the Emulation mode ana DL in not egual to zero, the dingct
addressing range is 000000 1o DOFFFF

Absolute Indexed Addressing (WESCE16 Only)

The Absolute Indered addressing modes are used to address data oul-
side the direct addressing range Thie WESCOZ and WESCBOZ address:ng
range is (000 10 FFFF Indexing from page FFXX may resull in a DOYY
data fetch when using the WESCOZ or WRECADZ In contrast, indaxing
from page ZZFFXX may résult in ZZ+1,00% Y when using the WESCETE

Fulure Microprocessors (L.e., WE5CB32)
Future WDOC microprocessors will support all current WEZCEYE operal-
ing modes for bath index and offset address generation

ABORT Input (WE5C816 Only)

ABOHAT shaould oe hald low for a period not 1o exceed one cycle Also, if

ABORT 5 held low during 1he Abor Interrupt sequence, The Aborl Inter-

rupl will be aborted It is not recammended o abort the Abort Interrupt

The mntermal latch is cleared during the sacond cycle of the Abary

Interrupt. Asserting tha ABOAT input alter 1he fallowing instruction

cyches will cause regisiers to be modifiod

= Read-Modity-Wrile: Processor status modified f ABORAT is asserted
after a modily cycle

= AT Processor siatus will be modihied | ABORT 5 assarted afier

gycled S

IRQ, NMI, ABORT BRK, COP: Wnen ABORT is asserted after cycle 2,

PEA and DBA will become 00 (Emulation mode) or PBR will become

00 [Mative mode]

The Abort Interrupd has been designed for virtual memory syslems, For
1his reasan, asynchronous ABOR TS may cause undesirable resulls due
10 tha above candifions

g:lnrud VPA Valid Memory Address Oulput Signals (WESC218
¥

When VDA or VPA are high and duning all write cychés, the Address Bus
15 always vahd VDA and VPA showld be used 1o qualily all memaory cycles
Mote that whan V0A and VPA are both low, invalid addresses may e
generated. The Page and Bank addresses could also be invalid. This will
ba dus 1o low byle addition only. The cycle when only low byle addibion
DCours is an optional cyche lor instructions which read mamory when the
Index Aegisterconsists of 8 bits This optional cycle becomes a standard
cycle for Ine Store instruction. all instructions using ihe 16-bit Index
Aegiatarmode, and the Aead-Modiby-Write instruction when uasihg 8- or
16-bif Indox Ragisier modes

Appile H, lie, lic and I+ Disk Systems (WE5CB16 Only)

VDA and VPA should not be used 10 qualily addresses during disk opera-
tion on Apple systems Consull yous Apple represantative for hardware/
software configurations.

DB/8A Operation when RDY is Pulled Low (WE5C816 Only)
When ROY is low, 1he Data Bus & held in tha data transier siate (e, a2
nigh) The Bank address external 17ansparent latch should be latched
when the @2 clock or RDY is low

M/X Outpul (WESC816 Only)

The 8/ X output reflects the value of the M and X bits of the processar
Status Register The REP, SEP and PLP insiructions may change the
state of the M and X Dits. Note that the M/X autpuat s invalid dunng the
instruction cycle lallowing REF, SEP and PLP instruction eseculion
This cycle is used as the opcode letch cycle of tha next instruction

All Opcodes Function in All Modes of Operation
it should be noted that all opcodes functon in all modes of operation
Howawer, some inastruclions and addressing modes &re intended fos
WESCH16E 24-0it addressing and are therefore less useful for the WESCBO2
The folowing s a list ol instructions and addressing modes which are
primanily intendead lor WESCH16 use

JSLATL: [d]. [dLy. JMP al, JML_ al, al.x
The lollowing instructions may be used with the WESCBO2 even though
& Bank Address s not mulliplesed on the Data Bus:

PHK: PHB; PLB

The tallowing nstructions have “limited” use in the Emulation made
The REP and SEP instructions cannot modily the Mand X bits whenn
the Emulation mode In this made the M and X Dits will always be high
ilagic 1)
Winen n ine Emulation made. the MVP and MYN instructions use the
X and ¥ Index Regisiers for the memary addreas. Alag, the MYP and
MV instructions can only move data within the memary range 0000
{Source Bank) to DOFF (Destination Bank) for the WESCE16, and 0000
o DOFF or the WESCBOZ2

Indirect Jumps

The JMP (a) and JML (a) inatructions use the direct Bank for indirect
addressing, while JMP jax] and JSA (&.x) usa ine Program Bank for -
direct address tables

Swilching Modes

Wnen switching from fhe Natwe mode ta the Emulation mode. the X and
M Bits af 1ne Status Register are sei high {logic 1). the Righ byte of 1ne
Stach is a1 10 01, and the high byles of thie X and ¥ Index Regstars are
sat 1o 00 To save previous walues, these byles musl always be stored
bators changing modes. Mole thal 1ne low oyte ol the 5, X and ¥ Regusters
and the low and high oyte of the Accumulator (A and B) are not allected
by & mode change.

How Hardware Interrupts, BRK, and COP Instructions Affect
the Program Bank and the Data Bank Registers

When i tha Mative mode, the Program Bank regestes [PBR) s cleared 10
00 when & hardware imgrupt, BRK or COP is execuled. In the Native
mode, previous PBRA contents s automatically saved on Stack

in the Emulation mode, the PBRA and DBA registers are claared 1o 00 when
a harcware interrupt, BAK or COP s executed In Lhis Case, prévious con-
tants of the PBA are nol avtomatically saved

MNotethat a Raturn from Interrupt (RTI) shoukd siways be executed from
ihe same “mode” which onginally generated the interrupl

Binary Mode
The Binary mode 15 58l whenaver a hardware or soltware intarrupt is
exacuted. The D llsg within the Status Register is cleared (o zedo

WAI Instruction

The WA ingtruction pulls ADY low and places the processor in the WAl
“iow power” mode. NMI, [RG or RESET will larminate the WAl condition
and transter coniral to the inierrupt handler routine, Note that an ADORT
inpul witl aport the WAL instruction, but will nof restart the processor
When the Status Regster | flag is sel 1ﬁ5 disabled), the rrupl
will cause the neéxt instruction_(folipwing the WAl instructon) to be
executed withou! going to Ine interrup! handier. This meihod re-
sulis in ine highast speed response 10 an TRQ input. Whon an interrupt

Appendix 2 491

s received after an ABORT which occurs during 1he WAI instrugtion. the
Processor will raturn to the WAl instruction. Other than RES (highast
Ariorityl, ABORT is the next highest prionlty, follswed by NM) or (RGO
mBrrgpis

STP Instruction

The STP instruction disables the ¢2 clock io all corcuitry. When disabled,
Ihe @2 clock is haid i ihe high stale In this case e Data Bus will rema:n
in the data tranglar stale and the Bank address will not be mukt ipieaed
anto the Data Bus. Upon executing the 5TE instruction, the AES signalis
the only input which can resian the processor Thuprmruremm
by enabiing 1he @2 clock, which oCours an the talling adge of 1ne AES
inpul. Kot il the exiernal osciltalar must be slabie and operating prop-
erly before AES goes high

COP Signatures

Signatures 00-TF may be user defined, while sagnatures B0-FF e ra-
served for instruchons on luture microprocessors || e WESCA3Z}, Con-
tact WDC for software emulation of fulure microprocessor hardwars
functions

WDM Opcode Use

The WOM opcoda will be used on future microprocessors. Far axampée,
he new WESCHI2 uses this opcode to prowde 32-tit Hoating-point and
elher 32-bit matn and data operal:ons Nole that the 'WESCBIZ will be a
plug-ta-plug replacement lor the WESCE1E, and can be used wnere high-
speed, J2-bet math processing is required The WESCHI2 will be available
i the naar fulure

RODY Pulled During Write

Thie NMOS 6502 does not S10p duning a write aparation. In contrasi, both
the WESCOZ and the WESCA18 do stop during write operations Tha
WESCHO2 stops during & write when in the Native mode. bul dows not
stop when in tha Emulalion mode

MVN and MVP Affects on the Data Bank Register
Tre MVN and MVP instructions change Ihe Dala Bank Registar 1o 1he
valua of the second byte of fhe instructon {destination bank address|

Interrupl Priorilies
Tne fallowing infesrupt priarities will be in effect should mare than one
mAlerrupl ococur al the same lime

EE; Highest Prarty
ABDRT

LT

AQ Lowest Prigrity

Transfers from 8-Bil lo 16-Bit, or 16-Bit 1o 8-Bil Registers

All Lranstars from one register to another will result ina full 18-bit output
Irom the source register The destingtion régister size will doterming Ihe
fumBer of bils actually stored in the destination register and he values
stored in the processor Status Register The loliowing are always 16-tit
translers, regardiess of the accurmwlator size

TCS: TSC, TCD; TDC

Stack Transiers

When in the Emulation made, a 01 is farced into SH_ In this case. the B
Accumuiator will not be |eaded into SH during a TGS instruction. Whan
in 1ne Native mode. the B AccumulBlor s transterred 1o SH. Note that in
Boin ihe Emulaiion and Native modes. the full 16 bits of the Stack Regis-
ter are translerred 1o the A, B and C Accumulators, regardlass of the
State of the M it in 1he Status Register.

WDC Toolbox System-Emulator

Features

* Real-Tima emulation of the WBSCE02/818 and the WESCO2

* Uses an inexpensive Apple lle Computer as host (sofiware provided)
18K bytes of Emulation RAM. mappable in 2K blocks

Optional RAM expansion 1o 256K

Cptional hardware Rgal-Time Trace Board

Optional BO2/816 Emulation Pod Unii

Single-Step

4B pit trace mamory of up to 2048 machine cycles

Thres 40-bit brsakpoint control Tegisters prawviding:

—Break on Address

—Hreak on Data

—Break on Conirel

—Break on User Status

—Break on Mth Occurance

—Coast Mode

* Micrasecond exscution timer

* Also availsble in In-Cireuit-Evaluation chip or system test confguration

Product Overview

The Toolbox System-Emutator consests of & Main Unit snd Interface Carg
that plugs inta ona of the Apple Comp, 5 SXpAnsion slots. The Main
Uit provides all necessary logic for Breakpointing, single-stepping and
mapgeng. In this configuration the user may perlorm basie debug opera-
tions or use the Tostbox in the Evaluation Mode

With the optional Aeal-Time Trace Board, the user now has 40 bits of
irace memory within o window of 2048 machine cycles A optional
Emulation AAM Expansion Board is also available which increases tha
user's smulaton AAM by B4K byles or 256K bytes. with memaory configur-
ation under soltware control

The Toolbox may be used with or withau the optional Pod Linit. With the
Pod Linit, the user can plug into the POClype microprocessor sacket for
hardware debug. Since the Main Unit remains the same regardiess of
the microprocessar used. the user does nof have 1o learn & now sat of
Toolbox commands lor each type of processar

Apple lie is a trademark of Apple Computer, Inc

L I]

492 Appendix 2

Additional Information

For additional infarmation on the WESCBOZ/BIE, refer to the following
publications.

Programming the 65816
‘William Labizk

SYBEX, Inc.

2344 Sinth 51

Barkelay, CA 94710

The 8502, 85C02 and 85816 Handbook
Steve Hendrix

Weaber Systems, Inc

B437 Mayfield Rd
Chesterland, OH 44026
65816/65802 Assembly Language Programming
Michael Fisher

Oaborne Mol raw-Hill

2600 Tenth St

Borkeley, CA 94710

Pragramming the 85816 Including the 8502, 65C02, and 85802
David Eyes and Rion Lichty

Prantice Hall Press

A Dvvision of Simon & Schuster, Inc

Gulf & Wastern Bldg

One Gull & Western Plaza

New York, NY 10023

Packaging Information

Ceramic Package Plastic & Cerdip Package
Li A0 Pt PACHAGE
’i '-_F* e INCHES WL LIMETEAS
8oL LI Mkx Ll ELL)
A 0z E 5/ |
-u- o 0033 LE Y LU
e | oom nat o | e
o oo Bio1s g;m | am
o ame | sam |
[2810 0B | e 7S
1) LT OB N | wod
. 0000 BSC 1t B
v e [oo [3 T soe |
[S) 0% - im
o oo go6a | 8% 152
s | - a8 i
5! Ltk =
52 ooos |
- E W e
Plastic Leaded Chip Carrier
Dz 4L EAD CARIER
BOTH —— HEHES MILLIMETERS.
SIDES wn | man MIN
| oo | 430 |
o | 2w |

T

T]

T—NnnNnonon
i

*
PINNO. 1

¥ N - NO. LEADS

NOTES:

1. Power supply pins not available on the 40-pin version. These
power supply pins have besn added for improved high
perlarmance

2 New ping, Hot avdlsble on $0-pin version

Appendix 2 493

Ordering Information

W EECI_E PL I ;!
Description r
WC—Cusiom

W—Siandard

Product Identification Mumber

Pachage

P— Plaatic E—Leadiess Chip Carniar
C—Ceramic X—Dice

D—Cerdip PL—Plastic Chip Carrigr
Te

Blank—0"C to 70° C

I=-40°C 1o +B5"C

M—-55°C ta +125°C

Performance Designator

Designators selecied for spead ang Power
specilications

Blank — 2 MHz

4 A MHz

-6 6 MHz

-8 8 MHz

Sales Oticen:

Technical or saims assistance may be requested fram
The Wastern Design Center, Inc

2188 East Brown Road

Masa, Arizona 85203

802/962-4545

TLX 6835057

WARNING: Rapresented in your area by:
MOS CIRCUITS ARE SUBJECT TO DAMAGE FROM STATIC DISCHARGE
IMternal sane discraige circuits 318 Grovided 1o mimamie BarE damage due 1o e or
Wadee plechical charge Build ups Indiesiry eslablished FRLpmmendatens lor nandl ng MOS

T e & o e

S vl Gote product v conduciiee SEhEINg tubes o w conductisee Fam pasts Mewer

Ship 07 S1ote product 10 non Condueclee plasiic TUAIANES o Apn conduchive DIasta Midin
ITLEET

Handle MOS pasts only sl Conducime Wit slafons

Geaarnd all avsembey 40 fegasr iols

At

R

WO resarves Ihe right to make changes ai any time and withaut nofice

Informateon contmsned haren is proviced @rafuiiously and wrinoul labiivy, io sy user Ressanatie eflorts have baan made 10 verrly Ihe accuracy of the informatson but nao
QUBranies whatsomvar i grean a8 io the sCCureCy of &8 10 iy Applicability 10 parbcular uses. in every INKEACE, IE must be the respongitiidy of the user (o determing the suitabil-
1y of 1he products for sach apphicatinn WOC products ane n) Buthorand for ute s crtical components in lifte support dences of sysiems Noming contaned hessin shail b
conairued as & IeCOmMEndRtian 10 use sy product in violetion al axisting patents o+ afher nghts of Fied parlies The sais of any WDC product is subect 10wl WDC Termy
and Conditions of Sale and Sakes Pokicies. copies of whith &Fe dviilabie upon reguss

T Wasten Dusgn Canier, inc 1985 FAXBO28356442
The Western Dasign Center, Inc. 2166 E. Brown Ad./Mesa, AZ 85203 602/862-4545/TLX 6835057
Flarvimcl b Laguint 1688 Publishad in USA November 1688

494 Appendix 2

APPENDIX 3

The Apple lIgs
Tool Sets

Approximately half of the Apple 11Gs tool sets are located in ROM. (They are marked
with asterisks in the table below.) When ProDOS 16 starts up, it installs RAM-
based bug fixes and enhancements to the ROM-based tool sets by executing the
TOOL.SETUP program in the SYSTEM/SYSTEM.SETUP/ subdirectory of the boot
volume.

RAM-based tool sets are stored on disk in files with names of the form TOOLxxx
(where xxx represents the three-digit too]l set number in decimal form) in the
SYSTEM/TOOLS/ subdirectory of the boot volume. You can install these tool sets
from inside an application with the Tool Locator’s LoadTools and LoadOneTool
functions (see chapter 3).

The macro files referred to in the following table contain the macro definitions
for tool set functions in assembly language form. These files are included with the
Apple 11Gs Programmer’s Workshop (APW).

Table of Apple T1:s Tool Sets

Tool Set

Number Tool Set Name - APW Macro File
001 *Tool Locator M16.LOCATOR
002 *Memory Manager MI6.MEMORY
003 *Miscellaneous Tool Set MI16.MISCTOOL
004 *QuickDraw 11 M16.QUICKDRAW
005 *Desk Manager M16.DESK

006 *Event Manager MI16. EVENT

007 *Scheduler MI6.SCHEDULER

495

-

Tool Set

Number Tool Set Name APW Macro File
008 *Sound Manager M16.SOUND
009 *DeskTop Bus Tool Set MI16.ADB

010 *Floating-Point Numerics (SANE) MI16.SANE

011 *Integer Math Tool Set MI16.INTMATH
012 *Text Tool Set MI16. TEXTTOOL
013 *RAM Disk Tool Set [internal use|
014 Window Manager MI6. WINDOW
015 Menu Manager M16.MENU
016 Control Manager M16.CONTROL
017 System Loader MI16.LOADER
018 QuickDraw Auxiliary Tool Set MI16.QDAUX
019 Print Manager MI16.PRINT

020 LineEdit MI16.LINEEDIT
021 Dialog Manager MI16.DIALOG
022 Scrap Manage: M16.SCRAP
023 Standard File Operations Tool Set M16.STDFILE
024 Disk Utilities [none]

025 Note Synthesizer MI6.NOTESYN
026 Note Sequencer [none]

027 Font Manager MI16.FONT

028 List Manager M16.LIST

* = tool set in ROM

496 Appendix 3

APPENDIX 4

Number-

Conversion
Functions

The Integer Math Tool Set (tool set 11) includes nine functions you can use to
convert numeric data from one numbering system to another. (See the table below.)
The three numbering systems supported are binary, decimal, and hexadecimal. The
purpose of this appendix is to explain how to use these conversion functions in your
programs.

Table of Integer Math Tool Set Number-Conversion Functions

Function Description

Int2Hex Converts unsigned integer to hex ASCII string

Long2Hex Converts unsigned long integer to hex ASCII string

HexIt Converts unsigned integer to hex ASCII string on stack
Hex2Int Converts hex ASCII string to unsigned integer

Hex2Long Converts hex ASCII string to unsigned long integer

Int2Dec Converts signed/unsigned integer to decimal ASCII string
Long2Dec Converts signed/unsigned long integer to decimal ASCII string
Dec2lnt Converts signed/unsigned decimal ASCII string to integer
Dec2Long Converts signed/unsigned decimal ASCII string to long integer

497

BINARY TO HEXADECIMAL

There are three functions for converting unsigned binary numbers to hexadecimal
form: Int2Hex, Long2Hex, and HexIt.

IntZHex converts a 16-bit unsigned binary integer to an ASCII string representing
its value in hexadecimal form. Here is how to use it:

PushWord TheNumber iNumber to convert
PushPtr HexString iPush pointer to hex string
Pushlord #4 sLength of hex string
_Int2Hex
RTS

HexString DS 4 j(standard ASCII; bit 7 = 0)

The hexadecimal string returned by Int2Hex is right-justified and padded on the
left with ASCII 0 characters. In most situations, you will reserve four bytes for the
string because the maximum value of a 16-bit integer is $FFFF. If vou do not leave
enough room, an error of $0B04 (string overflow) will be returned.

You can also use HexlIt to convert a 16-bit unsigned integer to a 4-byte ASCII
string of hexadecimal characters. The difference between it and Int2Hex is that the
result is returned on the stack:

PHA iSpace for result (long)
PHA

PushWord TheNumber iNumber to convert
_HexIt

FopLong HexResult iPop the result

The first bytes popped from the stack are the low-order hexadecimal digits.
Long2Hex works much like Int2Hex. The key difference is that the number to
be converted is a 32-bit unsigned long integer:

PushLong TheNumber iPush number to convert
PushFtr HexString iPush pointer to hex string
PushWord #8 iLength of hex string
_Long2Hex
RTS

HexString DS 8 j{standard ASCII; bit 7 = ()

Notice that eight bytes are reserved for the hexadecimal string result because the
maximum value for a long integer is $SFFFFFFFF.

498 Appendix 4

HEXADECIMAL TO BINARY

To convert ASCII strings representing hexadecimal numbers to binary form, use
Hex2Int (integers) or Hex2Long (long integers). In both cases, the binary result is
returned on the stack. Here is how to call Hex2Int:

PHA ;space for resultl
PushPtr HexMumber ;Pointer te hex number
PushWord #4 ;Length of hex number string
_Hex2Int
FopWerd BinResult ipop the result

HexHumber DC C'7EAF! :Number to convert

The length parameter cannot be greater than 4 since an integer cannot exceed
SFFFF.
Hex2Long converts hexadecimal strings to 32-bit numbers:

PHA ;space for result

PHA

PushPtr HexMHumber sPointer to hex number

PushWord #8 jLength of hex string

_Hex2Lang

PopLong BinResult jpop the result
HexMumber DC C'o0E12000° sNumber to convert

The length parameter cannot be greater than § for long integers.

BINARY TO DECIMAL

The binary-to-decimal conversion functions are useful for transforming binary num-
bers to the more-recognizable decimal form.

Int2Dec converts a 16-bit signed or unsigned binary number to an ASCII string
representing the number in decimal form. If the number is negative, the string
contains a minus sign to the left of the first digit in the string. No plus sign is
inserted if the number is positive, however.

Here is the calling sequence for Int2Dec:

PushWord TheNumber ;The number to convert
PushPtr DeeString ;Pointer to decimal result
PushlWord #6 1Size of string
PushWord SignedFlag ;0 = unsigned, 1 = signed
_Int2Dec
RTS

DecString DS B 3ASCI] decimal stiring

Appendix 4 499

The value of the SignedFlag parameter indicates whether the number is to be

considered signed or unsigned. The size of the string should be at least 6 to

accommodate the longest result. The result is right-justified and padded on the left

with blanks. Each character of the result has the high-order bit cleared to 0.
Long2Dec works much as Int2Dec does:

Pusthng TheNumber ;The number to conwvert
PushPtr DecString iPointer to decimal result
FushWord #11 iSize of string
PushWord SignedFlag 10 = unsigned, 1 = signed
_Int2Dec
RTS

DecString DS 1 iASCII decimal string

The key differences between this and Int2Dec are that the number to be converted

is a long word and that the size of the string returned might be up to eleven
characters long.

DECIMAL TO BINARY

Most programs ask users to enter numeric information in decimal form. To convert
decimal numbers to the binary form the 65816 understands, use Dec2Int or
Dec2Long,

Dec2Int converts the ASCII string for a decimal number to a 16-hit unsigned or
signed binary number:

PHA ispace for result
PushPtr DecString iPointer to decimal string
PushWord #6 ;Size of string
Pushlord SignedFlag i0 = unsigned, 1 = signed
_Dec2int
FopWord BinWord iget the result
RTS
DecString DC c' 2342! iNumber to convert

Notice that Dec2Int returns the 16-bit binary result on the stack.
Dec2Long converts the ASCII string for a decimal number to a 32-bit unsigned
or signed decimal number:

PHA ispace for result

PHA

PushPtr DecString ;Polnter to decimal siring
PushWord #11 1Size of string

PushWerd SignedFlag 310 = unsigned, 1 = signed

300 Appendix 4

"_Dec2lLong
PopLong BinLong ;get the result
RTS

DecString DC C'-21882423323' ;Number to convert
Dec2Long returns the 32-bit result on the stack.

For both Dec2Int and Dec2Long, SignedFlag is a Boolean indicating whether
the number is unsigned (0) or signed (nonzero).

Appendix 4 501

APPENDIX 5

ProDOS File
Type Codes

The table below indicates the general contents of a file with a given ProDOS file
type code. The standard three-character mnemonics are usually shown only when
vou catalog the disk under ProDOS 8 or APW. Even then, some of the mnemonies,
particularly the ones for Apple I1I SOS files, are not used; instead, the hexadecimal
file type code is displaved to identify the file tvpe.

Table of ProDOS File Type Codes

File Type Standard

Code Mnemonic _ Description of '"H.".

S00 Uncategorized file

501 BAD Bad block file

$02 PCD Pascal code (SOS)

$03 PTX Pascal text (SOS)

$04 TXT ASCII textfile

505 PDA Pascal data (SOS)

%06 BIN General binary file

s07 ENT Font file (SOS8)

$08 FOT Graphics screen file

509 BASJ Business BASIC program (SOS)
S0A DA3 Business BASIC data (SOS)
$0B WPF Word processor file (SOS)

503

File Type Standard

Code _ Mnemonic Description of File

$0C S0S 508 system file

$0D-$%0E [Reserved for SOS]

SOF DIR Subdirectory file

S10 RPD Record Processing System data (SOS)
$11 RPI Record Processing System index (SOS)
$12 AppleFile discard file (SOS)

$13 AppleFile model file (SOS)

$14 AppleFile report format file (SOS)
%15 Screen library file (SOS)

516-%18 |Reserved for SOS)

$19 ADB AppleWorks database file

1A AWP AppleWorks word processing file

$1B ASP AppleWorks spreadsheet file
$1C-SAF [Reserved |

5BO SRC APW source code

$B1 0OB] APW object code

$B2 LIB APW library

$B3 516 ProDOS 16 system program

3B4 RTL APW run-time library

3B5 EXE APW executable shell application
3B6 STR ProDOS 16 permanent init (start-up) file
5B7 TSF ProDOS 16 temporary init file

$BS NDA New desk accessory

$B9 CDA Classic desk accessory

$BA TOL Tool set

$BB DRV ProDOS 16 device driver

$BC-$SBE [Reserved for ProDOS 16 load files]

504 Appendix 5

File Type Standard

Code Mnemonic Description of File

$BF DOC ProDOS 16 document file

$C0 PNT Compressed super high-res picture file
3C1 PIC Super high-res picture file
$C2-8CT [Reserved |

sC§ FON ProDOS 16 font file

$CY9-SEE [Reserved]

3EF PAS Pascal area on a partitioned disk
3FO CMD ProDOS 8 added command file
$F1-8F8 ProDOS 8§ user-defined files
$F9 P16 ProDOS 16 file

SFA INT Integer BASIC program

3FB IVR Integer BASIC variables

$FC BAS Applesoft BASIC program

$FD VAR Applesoft BASIC variables

SFE REL EDASM relocatable code file
3FF SYS ProDOS 8§ system program

NOTE: SOS stands for the Apple 111 Sophisticated Operating System.

Appendix 5

505

APPENDIX 6

Memory Cards
for the Apple llgs

A standard cs comes with 256K of RAM, twice the memory capacity of either the
Ile or Ile. This configuration is perfectly fine for running Ile/Ile-styvle programs. It
is not enough, however, to run the new s applications that use the Macintosh-like
desktop environment provided by the ¢s's software tool sets. This is because these
tyvpes of programs typicallv need plenty of memory to hold RAM-based tool sets,
custom fonts, desk accessories, and so on.

For some applications, vou may not need more memory, but the application will
perform much better if vou do have it. The best example is version 2.0 of
AppleWorks. It uses extra memory to increase its desktop space so that you can
have several large files open at the same time.

You may also want to add extra memory to take advantage of useful utility
programs that make the Gs faster and more pleasurable to use. Here are some of
the things for which extra memory can be used:

* A RAM disk

= A disk-caching area

* A print-spooling area

* A buffer area for copying disks in fewer passes
BAM disk support for extra memory is a built-in feature on the cs. Using the
Control Panel's RAM Disk command, vou can allocate as much available memory
as vou like for use as a RAM disk.

This appendix reviews available memory cards for the s that plug into the Gs’s
memory expansion slot. See the list of manufacturers below. RAM memory on a

507

card in this slot forms part of the 65816 address space, so programs can use it just
as they would use the 256K memory core. The permitted memory limit for such
cards is 8 megabytes.

MANUFACTURERS OF MEMORY CARDS FOR THE GS

Apple 1lcs Memory Expansion OctoRAM

Card MDIldeas, Inc.

Apple Computer, Inc. 1163 Triton Drive
20525 Mariani Avenue Foster City, CA 94404
Cupertino, CA 895014 415/573-0580
408/996-1010 RinPalidiss

Gs RAM and Gs RAM Plus Orange Micro, Inc.
Applied Engineering 1400 N. Lakeview Ave.
P.O. Box 798 Anaheim, CA 92807
Carrollton, TX 73006 T14/779-2772
214/241-6060

RamStakPlus

AST Research Inc.
2121 Alton Avenue
Irvine, CA 927144992
T14/553-0340

APPLE IIGS MEMORY EXPANSION CARD

The first memory card available for the Gs was Apple’s own Apple 1llcs Memory
Expansion Card. It comes with 256K of RAM, but you can expand it to either 512K
or IM by adding one or three additional rows of eight 256Kx1 bit memory chips to
empty sockets on the card. (Apple does not recommend a 768K configuration because
some programs cannot handle it.) These chips are inexpensive.

The Apple card is definitely a “plain-vanilla” product. It comes with no software,
not even a RAM diagnostic program for testing for bad memory chips. In addition,
it cannot be expanded past 1M and you cannot add any ROM to it. Despite this, it
is an attractive card because of its low price and its excellent owner’s guide. The
owner's guide clearly illustrates how to install the card and add memory to it, and
it contains a useful chapter describing how to allocate memory on the card for use

as a RAMdisk.
APPLIED ENGINEERING GS RAM

Applied Engineering is a well-known manufacturer of BAM cards for Apple 11
computers. Its two main products, RamFactor and (for the Ile only) RamWorks,
have sold in the tens of thousands.

508 Appendix 6

Applied Engineering actually has two such cards: s RAM and ¢s RAM Plus.
The Gs RAM uses 256Kx1-bit RAM chips and can hold up to 1.5M of memory. It
is essentially the same as Apple’s card but with two extra rows of eight RAM sockets.

Gs RAM Plus looks very similar to ¢s RAM, but it uses 1,024Kx1 bit (one-
megabit) RAM chips. This means that each row on the card holds one megabyte of
memory, so the capacity of the card is six megabytes. A set of eight of these chips
is still more expensive than the 256Kx1 chips, but the cost is dropping fast.

Both cards contain an expansion port that Applied Engineering plans to use for
adding 2M more RAM, or ROM, via a piggyvback card.

¢s RAM and s RAM Plus come with diagnostic software and the AppleWorks
2 Expander program. The Expander enhances AppleWorks 2.0 so that it will work
even better than it already does with Gs memory cards. The special enhancements
it offers are as follows:

* More lines in the word processor (22,600 versus 7250)
* More records in the database (22,600 versus 6350)

« More lines in the word processor and database clipboard
{2,042 versus 250)

« Display of the current time on the screen
« Saving large files to multiple disks
* Up to a 64K print buffer (versus 2K)

* Quick time entry in the database

MDIDEAS OCTORAM

The MDIdeas OctoRAM is an interesting memory card. It contains eight standard
SIMM (Single In-line Memory Module) sockets that can hold 256K memory modules
or IM memory modules. Thus, the capacity of the card is either 2M (eight 256K
SIMMs) or 8M (eight 1M SIMMs).

A SIMM is a small printed circuit card that has eight memory chips soldered to
it. To add it to the memory card, you simply clip it into a socket on the card. SIMMs
are new to the Apple II world, but they are being used by Apple on the Macintosh
Plus. The Macintosh Plus has four SIMM sockets to which vou can add 256K SIMMs
(1M total) or 1M SIMMs (4M total).

The 1M SIMMs are currently a bit more expensive than conventional memory
chips, and they are more difficult to find because they are made by fewer manufac-
turers. It is expected that they will drop in price, but at a slower rate than the
1,024Kx1 RAM chips.

Appendix 6 509

ORANGE MICRO RAMPAK 4GS

Orange Micro’s memory card is called the RamPak 4Gs. As its name suggests, its
maximum capacity is 4M. It is the only memory card that uses 256Kx4-bit memory
chips, which means that you can increase memory by 256K by adding only two
chips. This makes the board less crowded than cards that use 256Kx1 RAM chips
(eight 256Kx1 chips are needed for 256K). Two 256Kx4 chips are still more expensive
than eight 256Kx1 chips, however, because 256Kx4 chips are a nonstandard size.
They are also more difficult to find.

RamPak comes with a Memory Management Utilities disk that contains a useful
and easy-to-use program that performs the following tasks:

* Memory verification
* Reporting of disk-access statistics

» Disk caching

This program installs itself as a Classic Desk Accessory (such as the Control Panel),
so you can call it up at any time by pressing Control-OpenApple-Esc from the
kevboard.

The most interesting aspect of the RamPak software is its ability to enable disk
caching for any disk device used with ProDOS. Caching is the storing of disk blocks
in memory so that when a read operation occurs, the block can be retrieved quickly
from memory rather than from the relatively slow, mechanical drive. If most of the
disk is cached, file operations are sped up dramatically.

The main advantage of caching over using a RAM disk is that there is no danger
of losing data because only read operations are cached. Data is always transferred
to the disk when a write occurs. Another advantage is that you do not have to
transfer files to the cache explicitly; that is done transparently by the caching software
the first time you load a program into memory.

The RamPak software is able to use up to 3.5M as a cache buffer. You can either
tell the software how much memory to use as a cache or tell it to allocate memory
dynamically.

AST RESEARCH RAMSTAKPLUS

The AST RamStakPlus is interesting because it is the only memory card that contains
sockets for ROM. Its maximum RAM capacity is 1M (four rows of eight 256Kx1 bit
chips), the same as Apple’s card. It is too bad that it was not designed to hold more
RAM, but it would be difficult to do because the ROM sockets take up a lot of
board space.

The RamStakPlus has four ROM sockets, each of which can hold a SK-64K
EPROM (Erasable Programmable ROM) or a 2K-32K EEPROM (Electrically Eras-
able Programmable ROM). You will probably want to use EEPROM because you

510 Appendix 6

can erase it and program it simply by running a program. You need a special
programming device to program an EPROM.

The RamStakPlus comes with a utility program that performs diagnostics and
programs EEPROMs. Programming an EEPROM is simple; all you have to do is
put all the files you want to place in the EEPROM in a subdirectory, then run the
EEPROM programming program that AST supplies.

In keeping with Apple’s standard guidelines. the files in ROM are organized in
the same way they are on a disk, so vou will have created a ROM disk. If the ROM
contains the necessary operating system programs, vou can even boot from ROM
by setting the Startup Slot in the Control Panel to ROM Disk. The big difference
between a ROM disk and a RAM disk is, of course, that the ROM disk does not
disappear when you turn off the cs.

MAKING A CHOICE

With this analysis of Gs memory cards by vour side, you should be able to choose
a card that will suit your present and future memory needs. To summarize, the key
factors in deciding what card to buy are:

* The base price of the card

* The cost of adding more memory
* The ease of adding more memory
® The upper RAM limit

= The ability to deal with ROM

e The availability of software utilities

Table A6 summarizes the features of each memory card.

If vou have a limited budget, keep in mind that you can start with just a little
RAM and add more when prices drop (or when you desperately need more). (You
can buy BAM chips at electronics parts stores and mail-order warehouses.) At this
stage, vou will have to determine what types of RAM chips to buy and where to
install them on the card.

RAM chips are produced by various manufacturers to many different specifica-
tions, so you must be careful to choose the right ones for your card. For Gs cards,
vou need RAM with a speed specification of 150 nanoseconds or faster that uses the
“CAS before RAS” refreshing technique. The capacity and configuration of the RAM
chips is also important; the possible choices are:

Appendix 6 511

Table A6: Apple 1lcs Memory Cards: A Comparison Chart

Memory Minimum RAM Chip ROM Utility
Product ~ Range Increment Size Capability Software
lIcs Memory 256 K-1M 256K 256Kx1 None None
Expansion Card
Gs RAM 256K-1.5M 256K 256Kx1 Option Diagnostics
s RAM Plus IM-6M M 1.024Kx1 Option AppleWorks
Enhancements
RamStak Plus 256K-1M 256K 256Kx1 On card Diagnostics
ROM programmer
OctoRAM 256K-2M 256K 256K SIMM Option Diagnostics
IM-5M IM IM SIMM
RamPak 4cs 512K-4M 256K 256K x4 None Diagnostics
Caching
Statistics

* 256Kx1-bit (8 chips = 256K)
¢ 1,024Kx1-bit (8 chips = IM)
= 256K x4-bit (2 chips = 256K)
+ 256K SIMM

* IM SIMM

Consult your card’s manual to determine what kind of RAM chip the card requires
and how many chips you need (eight for 256Kx1 or 1,024Kx1: two for 256Kx4: or
one SIMM). If you want to play it safe, order the RAM chips directly from the
card’s manufacturer. You will probably pay a little more, but you will not have any
headaches.

The order in which you fill rows of empty RAM sockets on a card is also important,
If you do not fill the sockets in the proper order, the card will not work properly.
Again, consult your card’s manual for installation instructions,

512 Appendix 6

APPENDIX 7

Disk Drives for
the Apple Illgs

There are nine different Apple-brand, removable-media disk drives vou can use
with the Apple Ilcs: five 5%-inch drives and four 3%e-inch drives. This appendix
looks at each of them and examines how to use them with the cs.

5%-INCH DISK DRIVES

The original drive for the Apple IT was the Disk II, first released in 1979, It works
with 140K 5%-inch floppy disks and comes with a permanent cable that terminates
in a 20-pin rectangular connector.

Apple no longer manufactures the Disk II, but the company has four other 5Va-
inch drives to replace it: the UniDisk 5.25, the Apple 5.25 Drive, the Disk Ilc, and
the DuoDisk. (The Apple 5.25 Drive is the same as the UniDisk 5.25 except for its
Gs-like platinum color.) The drive mechanism in each of these drives is functionally
equivalent to that of the Disk 11, so all of Apple’s 5V%-inch drives read and write
the same disks.

The DuoDisk is unique in that it contains two drives in one box. The UniDisk
5.25, Apple 5.25 Drive, and Disk llc are all one-drive devices. Each of these drives
has the same type of connector cable, however—one that terminates in a D-shaped,
19-pin, male DB-19 connector.

You can connect two (but no more than two) UniDisk 5.25 or Apple 5.25 drives
together by attaching the second drive to a connector on the back of the first drive.
This method of connecting multiple drives is called daisy-chaining and is Apple’s
“official” technique for attaching multiple drives to a system. Because a DuoDisk
contains two drives, it does not have a daisy-chain connector; nor do the older Disk
II or Disk Ilec drives.

3%-INCH DISK DRIVES

In 1985, Apple started selling a 3Y2-inch drive for the Apple 11 called the UniDisk
3.5. This is a very intelligent device, containing a 65C02 microprocessor and a
program in ROM for controlling disk data transfers. It uses double-sided 800K hard-
shelled disks for media and works with anv Apple II model (except older Apple Ilc
systems). The UniDisk 3.5 cable has the same DB-19 connector as the cable for the
UniDisk 5.25 and the DuoDisk.

When the Gs was announced in September 1986, another 3%-inch drive was
unveiled, the Apple 3.5 Drive. It works with the same 800K disks as the UniDisk
3.5 but does not have the built-in intelligence of the UniDisk 3.5. It works only
with the ¢s or the Macintosh. The main advantage of using an Apple 3.5 Drive
instead of a UniDisk 3.5 on the s is that the Apple 3.5 Drive operates slightly
faster.

The other two Apple-brand 3%-inch drives that can be made to work with the
Gs are the standard 400K and 800K external drives for the Macintosh. To use them,
you must have a Universal Disk Controller (UDC) from Central Point Software
(9700 S.W. Capitol Hwy., #100, Portland, OR, 97219 [503/244-5752]); more infor-
mation on the UDC is provided below. The UDC also works with all other Apple
drives (except the DuoDisk) and with one non-Apple-brand 3Ve-inch drive, the 800K
Chinon 3.5 drive sold by Central Point Software.

USING DRIVES WITH THE APPLE Ilcs

The s has slots like those on the Ile and built-in peripheral ports like those on the
Ilc. To select whether a port or its corresponding slot is active, use the Slots
command in the Control Panel desk accessory. You can call up the desk accessory
menu at any time by pressing Control-OpenApple-ESC.

One of the built-in ports, corresponding to slot 5, is a disk drive port called
SmartPort; it is designed to handle 3%-inch disk drives and any intelligent periph-
erals that use the data-exchange protocol and electrical specifications defined by
SmartPort. The SmartPort connector is a DB-19 type and is located at the back of
the cs.

Another built-in port, corresponding to slot 6, is the 5%-inch Drive Port. It
shares the same physical connector as SmartPort—this does not cause problems
because 5%-inch drives can be daisy-chained to SmartPort devices.

You will probably want to daisy-chain drives to the SmartPort instead of using
plug-in controller cards. Five types of drives can be chained to the SmartPort: the
UniDisk 3.5, the UniDisk 5.25, the Apple 5.25 Drive, the DuoDisk, and the Apple
3.5 Drive, (You can also use the Disk II, but only if you have a special adapter cable
made up.) It is important to understand, however, that vou cannot chain these
drives in just any order.

514 Appendix 7

If you are using Apple 3.5 Drives, they must appear at the beginning ol the
chain, before any UniDisk 3.5 drives or 5%-inch drives. You can use up to two of
these types of drives.

At the end of the chain come the 5%-inch drives: up to two UniDisk 5.25 drives
or one DuoDisk (which is equivalent to two UniDisk 5.25 drives) may be used.
There is one caveat relating to the DuoDisk, however—because of a hardware
problem in the drive, you cannot daisy-chain a DuoDisk having a serial number
below 433754. Apple has published a technical note describing a hardware fix to
solve this problem, so track it down if you want to use an old DuoDisk with the cs.

Between the Apple 3.5 Drives at the beginning of the chain and the UniDisk
5.95 drives at the end of the chain come any UniDisk 3.5 drives. The number of
UniDisk 3.5 drives is limited by the capacity of the Gs power supply. Apple rec-
ommends that you have no more than four drives connected to the SmartPort
(including anv Apple 3.5 Drives and 5%-inch drives), although the Gs seems to be
able to handle six quite well.

Keep in mind that no other ordering of drives will work: the order must be Apple
3.5 Drives followed by UniDisk 3.5 drives followed by 5%-inch drives.

The ProDOS § operating system requires that disk devices be mapped to tradi-
tional slot/drive combinations with no more than two drives per slot. How, then,
does it deal with the possibility that more than two drives may be chained to the
slot 3 SmartPort?

The way ProDOS 8 assigns slot/drive combinations to SmartPort disk drives is a
bit unusual. In most situations, the first four 3%-inch drives are considered to be
the slot 5/drive 1. slot 5/drive 2, slot 2/drive 1, and slot 2/drive 2 devices. The two
5Vi-inch drives on the SmartPort correspond to slot 6/drive 1 and slot 6/drive 2.
That is, connecting them to the end of the SmartPort chain is the same as connecting
them to a controller card in slot 6.

If you use the Gs Control Panel to define a system RAM disk, however, the slot/
drive assignments are scrambled slightly. The first 3%2-inch drive is still the slot 5/
drive 1 device, but the RAM disk is assigned as the slot 5/drive 2 device. The next
two 3%-inch drives “occupy” slot 2/drive 1 and slot 2/drive 2. Any other 3%2-inch
drives are not recognized by ProDOS 8,

ProDOS 16, on the other hand, does not require slot/drive assignments and will
work with any number of disk devices without difficulty.

If you wish, you can also use either of the two standard Apple 5Vi-inch disk
controller cards on the cs. If vou put the controller card in slot 5 or 6, keep in
mind that vou will not be able to use the SmartPort or the Drive Port, respectively.
You can also use Central Point Software’s Universal Disk Controller on the Gs. It
works with almost any type of 53%-inch and 3%-inch drive available for the Gs.

The Chinon 3.5 drives the UDC works that are also sold by Central Point
Software. The only major differences between them and Apple’s 3%2-inch drives are

Appendix T 515

that they do not have daisy-chain connectors and that the disk eject button is
completely mechanical. (There is an electronic disk eject mechanism that is con-
trolled by the same software commands as the Apple 3%-inch drives.) The Chinon
drives also work nicely as 800K external drives for the Macintosh.

A nice feature of the s is that you can use the Control Panel to specify the slot
of the drive from which to boot—this is called the Startup Slot. The default is “Scan,”
which means that the c¢s will boot from the first drive it encounters in a search
beginning in slot 7 and moving down to slot. 1 (this is the method used on the Ile).
Only the first drive in each slot or port is considered, however, so vou cannot boot
from a secondary drive. If you prefer, you can tell the Gs to boot from a given slot—
specify slot 5 to boot from the first 3%4-inch drive connected to the SmartPort, for
example.

516 Appendix 7

APPENDIX 8

Resource
Material

If you are interested in developing software on the Gs you should become a member
of APDA, the Apple Programmer’s and Developer’'s Association. Its address and
telephone number are as follows:

Apple Programmer’s and Developer’s Association
290 S.W. 43rd Street

Renton, WA 958055

206/251-6548

APDA is an association that was created by Apple Computer, Inc. in August 1956.
It is administered by the Apple Puget Sound Program Library Exchange Co-oper-
ative Association (A.P.P.L.E. Co-op). The primary function of APDA is to dissem-
inate prerelease versions of official Apple programming information for the Apple
IT and Macintosh families of computers. This includes technical reference manuals,
technical notes, and software development tools. APDA is also a convenient source
of non-Apple software and books for software developers.

The advantage of joining APDA is that you can get your hands on useful techn ical
information quickly. You do not have to wait for the information to be polished and
published in final form.

DEVELOPMENT SOFTWARE

To develop software on the ¢s, you will probably want the Apple I1cs Programmer’s
Workshop (APW), which is available from APDA (see above). The basic APW
package includes an editor, 65516 assembler, linker, and several support programs
you can use to create programs that run under ProDOS 16. The official APW
development system is almost identical to the ORCA/M system available from The
Byte Works Inc., #207-4700 Irving Blvd. NW, Albuguerque, NM, 87114 (305/895-
§183). This is because The Byte Works developed APW for Apple.

517

Another alternative Gs assembler, which does not require APW, is Merlin 816
from Roger Wagner Publishing, Inc. (1050 Pioneer Way, Suite P, El Cajon, CA,
92020 [619/442-0522]). It comes with a linker which is capable of creating standard
ProDOS 16 applications.

Apple also distributes an APW-compatible C compiler (developed by Megamax,
Inc.) which generates object code in the format expected by the APW linker.

An APW-compatible Pascal compiler is available from TML Systems (#23-4241
Baymeadows Road Jacksonville, FL, 32217 [904/636-8592]). TML also sells a stand-
alone Pascal compiler that uses the standard desktop environment of the cs.

MACINTOSH CROSS-COMPILERS

You can also develop Gs applications using cross-compilers on the Macintosh. The
advantage of doing this is primarily speed: compilation times are many times faster
when performed by the Macintosh’s 68000 microprocessor than when performed by
the Gs's less powerful 65816.

Consulair Corp. (140 Campo Drive, Portola Valley, CA, 94025 [415/851-3272])
sells the MACtoGS Assembler/Linker system. It assembles and links APW-compat-
ible 65816 assembly language source code files on a Macintosh to create complete
Gs applications. Of course, to run the applications, vou must first transfer them to
the Gs (using a communications program or Apple’s Passport program),

TML Systems (see above) has a Pascal cross-compiler that generates 65816 source
code files that can then be processed by Consulair's MACtoGS Assembler/Linker.
You can buy the compiler from TML separately or with the MACtoGS Assembler/
Linker included. Another Pascal cross-compiler is available from Megamax, Inc.
(Box 851521, Richardson, TX, 75085 [214/987-4931]).

Megamax also has a C cross-compiler which works with the same source code as
the version of C it developed for APW does.

REFERENCE BOOKS

The many books you will find useful for teaching yourself how to program the cs
fall into four categories:

* Gs-specific books
At the present time, most of these books have been written by Apple Com-
puter, Inc. Those that are not yet in final form are available from APDA.
When completed, most will be published and distributed by Addison-Wesley
Publishing Company, Inc.

* Books about the 1le and 1lc
These books will assist you in developing traditional applications on the cs.

518 Appendix §

» General books on programming in 65816 assembly language
* Books about the Macintosh

These books are useful because they describe general techniques for program-
ming in a desktop environment.

Books for the Apple Iics
Apple Computer, Inc., Apple I1cs Firmware Reference (Reading, MA: Addison-

Wesley Publishing Company, 1957).

Apple Computer, Inc., Apple llcs Hardware Reference (Reading, MA: Addison-
Wesley Publishing Company, 1987).

Apple Computer, Inc., Apple IIGs ProDOS 16 Reference (Reading, MA: Addi-
son-Wesley Publishing Company, Inc., 1987).

Apple Computer, Inc., Apple l1cs Toolbox Reference, volumes I and 11 (Read-
ing, MA: Addison-Wesley Publishing Company, 1988).

Apple Computer, Inc., Apple Programmer’s Workshop Assembler Reference
{(Cupertino, CA: Apple Computer, 1987).

Apple Computer, Inc., Apple Programmer’'s Workshop Reference (Cupertino,
CA: Apple Computer, 1987).

Apple Computer, Inc., Human Interface Guidelines (Reading, MA: Addison-
Wesley, 1987).

Apple Computer, Inc., Programmer’s Introduction to the Apple I1cs (Reading,
MA: Addison-Wesley Publishing Company, 1988).

Apple Computer, Inc., Technical Introduction to the Apple I1Gs (Reading, MA:
Addison-Wesley Publishing Company, 1956).

Fischer, Michael, The Apple 11cs Technical Reference (Berkeley, CA: Oshorne
MeGraw-Hill, 1987).

Wagner, Roger, Apple 11G:s Machine Language for Beginners, (Greensboro, NC:
Compute! Publications, 1987).

Appendix § 519

Books for the Apple Ile and Ilc
Apple Computer, Inc., Apple He Technical Reference Manual (Reading, MA:
Addison-Wesley Publishing Company, 1985).

Apple Computer, Inc., Apple le Technical Reference Manual (Reading, MA:
Addison-Wesley Publishing Company, 1985).

Apple Computer, Inc.. Apple Numeries Manual (Reading, MA: Addison-Wesley
Publishing Company, 1986).

Little, Gary B., Apple ProDOS: Advanced Features for Programmers (Bowie,
MD: Brady Communications Company, 1985).

Apple Computer, Inc., ProDOS Technical Reference Manual (Reading, MA:
Addison-Wesley Publishing Company, 1985).

Little, Gary B.. Inside the Apple lle (Bowie, MD: Brady Communications
Company, 1985).

Little, Gary B., Inside the Apple Ile (Bowie, MD: Brady Communications
Company, 1955),

Books on 65816 Assembly Language Programming
Eyes, David, and Ron Lichty, Programming the 65816 Including the 6502,
65C02 and 65802 (New York: Prentice-Hall, 1986).
Fischer, Michael, 63816/65802 Assembly Language Programming (Berkeley, CA:
Osborne McGraw-Hill, 1986),

Books for the Macintosh
Apple Computer, Inc., Inside Macintosh, volumes I, 11, TI1. and IV {Reading,
MA: Addison-Wesley Publishing Company, 1985, 1986),

Chernicoff, Stephen, Macintosh Revealed: Unlocking the Toolbox {Indianapolis,
IN: Hayden Book Company, 1985).

Chernicoff, Stephen, Macintosh Revealed: Programming with the Toolbox (In-
dianapolis, IN: Hayden Book Company, 1985),

520 Appendix §

Little, Gary B., Mac Assembly Language: A Guide for Programmers (New York:
Prentice-Hall, 1986).

MACAZINES

Magazines are the best source of information on what software and hardware prod-
ucts are currently available for the Gs. Many of the magazines that are available are
written for a general audience, but some are clearly for programmers only. The
ones marked with an asterisk in the following list are the ones programmers will
find most interesting.

A+
11 Davis Drive, Belmont, CA 94002
415/598-2290

*Apple Assembly Line
P.O. Box 250300, Dallas, TX 75228
214/324-2030

Call -A.P.P.L.E.
290 S.W. 43rd St., Renton, WA 98055
206/251-5222

inCider: The Apple I Magazine
80 Elm Street, Peterborough, NH 03438
603/924-9471

*MacTutor: The Macintosh Programming Journal
P.O. Box 400, Placentia, CA 92670
T14/630-3730

*Nibble: The Magazine for Apple 1l Enthusiasts
45 Winthrop Street, Concord, MA 01742
617/371-1660

*Open Apple
P.O. Box 7651, Overland Park, KS 66207

Appendix 8§ 521

INDEX

65816 microprocessor 1-2, 13 ff.
address space 14
addressing modes 30
cvele time 22, 50
emulation mode 1
instruction mnemonics 30
instruction opeodes 30
instruction set 22, 50
native mode 1
registers 13
specification sheet 471 ff.
speed 2, 13-14, 22

5530 serial communications controller 5

A register 20
Abort interrupts 37, 39
ABSADDR directive 47
absolute addressing mode 35
absolute indexed addressing mode 35-36
absolute long addressing mode 35
access code (ProD0OS) 338
accumulator 20
accumulator addressing mode 32
activate event 125, 129, 141
active window 161
ADB see Apple DeskTop Bus
addition 20, 27
effect of carry flag 17-18
effect of decimal mode flag 18
address space 2, 14
addressing modes 30
absolute 35
absolute indexed 35-36
absolute long 35
accumulator 32
block move 34
direct page 35
direct page indexed 35-36
immediate 32-33
implied 30
indirect 36-37

program counter relative 33
program counter relative long 33
stack 33
stack relative 33-34
stack relative indirect indexed
with Y 34
ADSR envelope 408, 410-411
definition 412
Alert 2855-289
alert boxes 267 ff., 288 ff.
default button 289-290
alert template 289
AllNotesOff 414
AllocGen 407409, 415
ALLOC_INTERRUPT 39, 360-361
Alternate Display Mode accessory 2,
106, 311
analog-to-digital conversion 10, 399, 407
AND instruction 28
AND mask 437438
APDA 517
appending files 3352
Apple Ile 1, 13
Apple Ile 1, 13
Apple llcs
announcement of 1
credits 12
Apple DeskTop Bus 7-8, 125
Apple menu 247
Apple Programmer's Workshop 11, 12,
40-41
selecting a language 40
Applesoft 2, 104, 109
Appletalk 3
memory usage 104
applications, creating 49-50
APW see Apple Programmer’s Workshop
arithmetic instructions 27
ascent 197
ASCII character codes 129, 199, 463 ff.
ASL instruction 29
ASML command 50

323

attributes (memory blocks)
bank-boundary limited 113
block 111-112
fixed 112-113, 115
fixed address 114-115
fixed bank 114
locked 112
page-aligned 114
purge level 113
setting 1189

special memory not usable 113

audio waveform 392-393
auto-key event 129, 140
auxiliary memory 2

auxiliary type code (ProDOS) 341

B register (accumulator) 20, 25
B register (data bank) 21
background color, text screen 9
banks $00 and 301 106
banks SE0 and $E1 102, 104-105
baseline 197
BeginUpdate 178-180, 317
binary-coded decimal 18
binary-to-hex conversion 498
BIT instruction 28
bit-manipulation instructions 28§
block move addressing mode 34
block move instructions 25
block record 110, 117-118
block-structured devices 330
BlockMove 120-121
blocks 110
allocating 116-117
disposing 118-119
moving 120-121
purging 115-119
Boolean data type 75
BootInit function 79
border color 9
BoundsRect 171
branch instructions 26
break flag 18
BRK instruction 18, 38, 40
busy flag 361
Button 125

524 Index

button (dialog) 273-274
default 274-275

C compiler 12
C register 20
CalcMenuSize 250-251
carry flag 17-18
CautionAlert 288
CHANGE_PATH 342-343
channel address 396
character devices 330
character ') 435
character origin 197
character rectangle 196-197
characters

how to draw 199-201
CharWidth 201
check boxes 275
CheckMItem 248, 251-252
ChooseFont 194

Classic Desk Accessories 2, 4, 5, 7T0-T1.

311 ff.

installation 313
CLEAR_BACKUP_BIT 344
clicking 67
cliphoard 73, 244
clock functions 144 ff.
clock speed 102, 105-106
clock/calendar 8
CLOSE 330
close box 169, 176, 185
CloseDialog 283, 285
CloseNDAbyWinPtr 314
ClosePoly 207
CloseWindow 175, 182, 185
closing files 350
color table 163-164, 166, 273

for a window 177

colors
for patterns 188
for pen 187

standard 167
comment feld 42
comment lines 41
compaction 110-112, 115, 117
CompactMem 110

comparing

effect on carry flag 18

effect on Hags 26
comparison instructions 27-28
composite video port 7
conditional assembly 49
constant definitions 4647
content region 161, 165
control characters 463
Control Manager 72

Control Panel accessory 2, 4, 6-7, 70—

71, 311, 330
controls 72, 168
COP instruction 35, 40
COPY directive 42
CPM 11
CREATE 337-338, 343
creating files 337
creation date 341
creation time 341-342
CStringWidth 201
cursor (graphics) 141
mask 142
record 141-142
cursor (text screen) 445, 447
horizontal position 447-448
positioning 447
vertical position 447-448
cyele time 22

D register 21

data allocation directives 46-47
data bank register 21. 35

data masks 437

data tvpes 73

DblTime parameter 139

DC directive 46

DeallocGen 414
DEALLOC_INTERRUPT 361
Dec2int 500

Dec2Long 500

decimal mode fHag 18
decimal-to-hinary conversion 500
decrementing 27
DeleteMenu 253-254
DeleteMItem 251

deleting files 342
dereferencing handles 114-115
descent 197
desk accessories 70, 255, 311 ff.
and Menu Manager 248
loading 333
desk accessory event 129
Desk Manager 70
DeskShutDown 312-313, 316
DeskStartup 312-313, 316
DeskTop Bus Tool Set 71
desktop metaphor 67
DESTROY 342
development software 517
device driver 436-437
device driver event 129
device name 345
diagnostics 2
dialog boxes 267 ff.
how to use 283 ff.
dialog items 271-272
Dialog Manager 73, 267 ff.
DialogSelect 287-288
DialogShutDown 269
DialogStartup 268-269

Digital Oscillator Chip 10, 71, 73, 359,

392
address register 395
analog-to-digital register 399
control register 395-396
data register 395
frequency register 395

oscillator enable register 395-399

oscillator interrupt register 398
registers 394
volume register 395
wavelorm register 397-398
direct page 14, 106
and ProDOS 16 44
direct page addressing mode 33
direct page indexed addressing
mode 35-36
direct page register 21
directories 330
directory entry 365
DisableDltem 251

Index

525

DisableMItem 250-251
disabling items 280
disk drives 330, 513 ff.

3 Vinch 6

5 Yiinch 6
disk operating system 329 ff.
disk-drive port 6
display modes 9
DisposeAll 118-119
DisposeHandle 111, 116, 118
DisposeMenu 254
disposing of blocks 111
DlgCopy 287
DlgCut 287
DlgDelete 257
DigPaste 287
DOC see Digital Oscillator Chip
DOC RAM 400

reading 391-392

writing 391-392
DOS 3.3 11
double-click operation 130
drag operation 67
DragWindow 185
DrawChar 199, 201
DrawCString 199-200
drawing 186
DrawMenuBar 249, 254
DrawString 199-200
DrawText 199-200, 209
drivers, RAM-based 436
DS directive 46

EA see effective address
editable text item 277-278

editing techniques, standard 72, 277-278§

eflective address 30
EMShutDown 127
EMStartup 126-127
emulation Hag 19
emulation mode 1, 13
direct page 14
stack 13, 21
EnableDItem 251
EnableMItem 251
END directive 42-43
EndUpdate 180, 317

326 Index

Ensoniq 359
ENTRY directive 43
EOF position 347, 354
EOR instruction 28
EQU directive 43
erase operation 203
EraseAre 204
EraseOval 204
ErasePoly 204
EraseRect 204
EraseRgn 204
EraseRRect 204
error reporting, for functions 83
ErrWriteBlock 439
ErrWriteChar 439
ErrWriteCstring 439
ErrWriteLine 439
ErrWriteString 439
event handling 136 ff.
event loop 125-126, 133-135
Event Manager 70, 125 ff.
event message 132
event posting 135-136
event record 130-132, 189
event types 128
EventAvail 135
events 70, 125
activate [25
menu-related 254-255
update 125
exchange instructions 25
EXE files 50
EXEC files 351
expansion RAM 108109
expansion slots 3—4

FFGeneratorStatus 402-403

FFSoundDoneStatus 402-403

FFSoundStatus 402-403

FFStartSound 401, 407

FFStopSound 402-403

file attributes 343-344

file level 350-351

file system 1D 345-346

file tvpe codes 338-340
summary 503 ff.

filename 331

FILETYPE command 50, 85
hll operation 203
FillAre 205
FillOval 205
FillPoly 205, 207
FillRect 205-206
FillRgn 205
FillRRect 2035
filter procedure
alerts 290
dialogs 284
SFGetFile 364-366
FindDItem 281
FindHandle 119
FindWindow 182-183
location codes 184183
firmware RAM 104
FixAppleMenu 248, 313, 317
FixMenuBar 245-249, 254
Floating-Point Numerics (SANE) 71
flow-of-control instructions 25-26
FLUSH 354
FlushEvents 135
Hushing files 354
FMStartup 193-194
font 73
attributes 198-199
family number 194
proportional 197
purge status 196
scaling 196
selecting 194
font characteristics 193194
Font Manager 73, 193-194
font rectangle 196-197
fontlD 194
FORMAT 355
formatting disks 355
FPT see function pointer table
frame 168
frame operation 203
FrameArce 204
FrameOval 204
FramePoly 204, 207
FrameRect 204-205
FrameRgn 204
FrameRRect 204

free space functions 121
free-form synthesizer 401403
free-run mode 396
FreeMem 121
frequency register, DOC 395
FrontWindow 183
full native mode, definition of 19
function pointer table 81
functions 3

error codes 83

returning a result 82-83

tool set 68

work areas 84

game /O port 6
GCB see generator control block
GEN directive 48
General Logic Unit (sound) 389-3850
generator 10, 392, 397, 399
deallocating 414
halting 402
priority 408-409
status 403
generator control block 403
generator table 406
GEQU directive 43
GetBackColor 201-202
GetBackPat 155-189
GetCaretTime 143
GetCursorAdr 143
GetDbITime 139
GetDefButton 281
GetDItemBox 251
GetDItemType 251
GetDItemValue 281, 283
GetErrGlobals 437
GetErrorDevice 438
GetFontlnfo 190, 197-198
GetForeColor 201
GetHandleSize 119-120
GetInGlobals 437
GetlnputDevice 438
GetlRQEnable 442
GetlText 281-282, 285
GetMHandle 253
GetMItemMark 252
GetMItemStyle 253

Index

527

CetMouse 141 HideCursor 143

GetNewDItem 271, 280, 2586 HideDItem 281
CetNewModalDialog 269-271, 250, 253 HideWindow 1850, 182, 155
GetNextEvent 152, 189, 286287 HiliteMenu 255-256, 287
GetNextEvent 126, 128-133, 135-136, HLock 112, 115, 115-119
138, 140 HLockAll 119
GetOutGlobals 437-438 human interface guidelines 67-68, 241,
GetOutputDevice 438 254
GetPen 190 HUnLock 112, 115, 118-119
GetPenMask 188 HUnLockAll 119
GetPenPat 188
GetPenSize 191 IO device
GetPenState 190-191 initialization 4358-439
GetPort 186 input 440
GetPortRect 171 logical types 435-436
GetSoundVolume 400-401 output 439-440
GetTableAddress 403-407 icon definition 279
GetTextFace 199 icon items 279
GetTextMode 202 ID numbers, for menu 244-245
GET_BOOT_VOL 338 1D tag 44, 115-116
GET_DEV_NUM 356-357 ImageWriter 11 437
GET_EOF 351-353 MouseText icons 437
GET_FILE_INFO 343-344 immediate addressing mode 32-33
GET_LAST_DEV 357 implied addressing mode 30
GET_LEVEL 351 incrementing 27
GET_MARK 353-354 index register select flag 19
GET_NAME 357-358 index registers 20
GET_PREFIX 347, 358 indirect addressing mode 36-37
GET_VERSION 355-359 information bar 168, 175, 178-179
global coordinate system 132, 171-172 InitColorTable 166
global labels 43 InitCursor 141, 143
GlobalToLoeal 172, 189 InitTextDev 438-439, 449
GrafPort 170-171 InsertMenu 243, 248, 254
graphics display memory 105 InsertMItem 251
grow box 169, 176 InstallCDA 313
GrowWindow 177, 185 InstallFont 196
INSTIME directive 48

handle 75, 110 instruction field 41

dereferencing 114-115 instructions, 65816 22
HandtoHand 120-12] instrument, musical 409—410
HandtoPtr 120-12] IntZDec 499
headphone jack 35, 10 Int2ZHex 498
Hertz 392 integer 75
hex-to-binary conversion 499 Integer Math tool set 71, 497 ff.
Hex2Int 499 inter-register transfer instructions 24
HexZLong 4599 interrupt handling 360
HexIt 498 and Scheduler 71

528 Index

interrupt instructions 30
interrupts 37 ff.
hardware 37
[RQ) disable Hag 18
software 38
IntSource 442
InvalRect 140
InvalRgn 140
inverse display 443
invert operation 203
InvertAre 205
InvertOval 205
InvertPoly 205
InvertRect 205
InvertRgn 205
InvertRRect 205
IRQ disable flag 18, 38
[RQ interrupts 37-39, 360
vector 38
IsDialogEvent 286-287
item descriptor 272-273
item values 283
item-definition procedure 279-280
items
adding to dialogs 280-2581
changing attributes 281-282

206

|

jump instructions 26

K register 21

KEEP directive 42

kev-down event 129, 140
kevboard 7

kevhoard equivalent 241, 247, 255
kevboard events 129

kevboard VO 435

kevboard input 441-442
kevboard interrupts 442

KillPoly 207

label field 41
labels
local and global 43
naming rules 41
language card 104
LEShutdown 269
LEStartup 269

Line 203
line drawing 203
LineEdit tool set 72, 269
LineTo 203

and polygons 207
LINKED language 30
Lisa &7
LIST directive 47
List Manager 73, 194
listing directives 47-48
load file (ProDOS 16) 350
load/store instructions 22-23
LoadOneTool 78, 85
LoadSysFont 196
LoadTools 77-78, 80, 85
local coordinates 141, 171-172
local labels 43
LocalToGlobal 172
locking blocks 115, 118
logical instructions 28
long integer 73
long static text items 276-277
Long2Dec 300
Long2Hex 498
LONGA directive 44
LONGI directive 44
LSR instruction 29

m Hag 19
MACGEN program 49, 75
Macintosh XL 67
macro definitions 45-49, 68
macro files

APW 76

tool sets 4495
magazines 521
main memory 2
mark position 347, 352, 354
master pointer 110

removal 118
MaxBlock 121
MCOPY directive 42, 49
measuring text 201
memory bank, definition of 14
memory expansion 102
memory expansion cards 108, 507 ff.
memory expansion slot 3

Index 329

Memory Manager 68, 102, 110 ff.
available memory 106
memory map 102-103
memory space 101
memory usage 2
memory/accumulator select flag 19
menu 241
color 236
creating 243
removing 253
menu bar 241
creating 248
size 249
menu item
appearance 246
changing attributes 249
changing name 249-250
checking 251-252
Close item 244
color-replace highlighting 247
deleting 251
desk accessory item 244
disabling 246, 250-251
dividing line 247
editing 244
enabling 250-251
inserting 251
marking 248, 251-252
text style 252-253
Menu Manager 72, 241
menu title
changing name 249
highlighting 255-256
menufitem line list 243-244
MenuKey 255
MenuSelect 254-255
MenuShutdown 243
MenuStartup 242
MIDI 409, 413
mini-assembler 2
Miscellaneous Tool Set 70, 144
MMShutDown 116
MMStartup 115-117, 126
modal dialog boxes 269-271
ModalDialog 270, 2583-285, 258-289
modeless dialog boxes 269, 285 ff.
modification time 344

530 Index

modifier flags 132-133
maodifier keys 129
most-significant bit 18
mouse 8§
mouse activity, in windows 183 ff,
mouse events 128
mouse-down 128, 138
mouse-up 128, 139
MouseText 443, 445
Move 189, 190, 199-200
MoveTo 189, 190, 195-200
MTShutDown 144
MTStartup 144
MVN instruction 25, 34
MVP instruction 25, 24

native mode 1, 13, 44

negative flag 19

negative numbers 19

New Desk Accessories 70, 311 ff.
installation 317

New-Video register 162

NewBarColor 256

NewDItem 271, 280-281, 286

NewHandle 110-111, 114, 116-118, 127

NewlnvertColor 256

NEWLINE 349

newline character 349

NewMenu 243, 248, 253-254

NewModalDialog 269-271, 280, 283

NewModelessDialog 285-286

NewOutColor 256

NewWindow 140, 170, 173, 175176,

179-180, 182, 208-209

NMI interrupts 37, 39

NOP instruction 30

Note Sequencer 73

Note Synthesizer 73, 407-405

NoteAlert 288

NoteOf' 407, 412, 414-415

NoteOn 407, 409, 415

NSShutDown 414

NSStartup 408, 412413, 415

NTSC video port 7

number conversion 497 ff.

numbering systems 44-43

OB] files 42

object code format 50
ObscureCursor 143
OffsetPoly 207
one-shot mode 397
opcode 22

OPEN 348

opening files 348
OpenNDA 314
OpenPoly 207
operand 22

operand field 42
operating svstems 10-11
OR mask 437-438
ORA instruction 28
oscillator mode 397, 413
oscillator, halting 383
overflow flag 18-19

page region 169
paint operation 203
PaintArce 204
PaintOval 204
PaintPoly 204, 207
PaintRect 204, 206
PaintRgn 204
PaintRRect 204
palette 163-164, 166, 170-171
ParamText 277, 282
partial pathname 332
Pascal 11
pathname 331
pattern 187-189
background 159
mask 187
PC register 21-22
FEA instruction 23
PEI instruction 23
pen 186
characteristics 186
pen modes 191-193
pen position 189-190
pen size 191
pen state 190-191
how to change 191
PenNormal 191
PER instruction 23

peripheral ROM 104-105
phantom slots 3
picture items 279
pitch 392-383
pitchbend 408, 412
point, definition of 187
pointer 75
polvgons 207-208
PopLong macro 76-77
PopWord macro 76-77
Portlnfo field 170
PortRect field 171
ports 4
PostEvent 135-136
prefixes 332-333, 346
PRINT macro 440
Print Manager 72
printer commands 449
printer O 435
printer output 437, 449
PRINTLN macro 440
processor status register 16-17
ProDOS 16 11, 72, 329 ff.
boot disk structure 332
commands 334, 336
entry conditions 43—44
errors 334
memory usage 102, 104
ProDOS § 11, 329
memory usage 101
ProDOS, and the clock 8
program bank register 21, 35
program counter 21-22
bank wrapping 22
program counter relative addressing
mode 33
program counter relative long addressing
mode 33
PtrtoHand 120-121
pull instructions 24
pull-down menu 241242
purge level 110-113
setting 119
PurgeAll 119
PurgeHandle 113, 119
purging 113, 117, 118
push instructions 23

Index 531

PushLong macro 76
PushPtr macro 76
PushWord macro 76

QDAuxShutDown 143
QDAuxStartup 143

QDShutDown 162

QDStartup 162, 172

Quickdraw Auxiliary Tool Set 72, 143
QuickDraw I1 70, 162 ff.

QUIT 50, 359-360

Quit Return Stack 359-360

radio buttons 275
BAM disk 330

booting from 6-7

how to use 6
RAM Disk Tool Set 71
RAM expansion 102
READ 3495-350
ReadAsciiTime 144
ReadChar 440-441
reading files 348, 350
ReadLine 440-441
ReadRamBlock 400
ReadTimeHex 85, 144-145
READ_BLOCK 356
ReallocHandle 110-111, 113-114, 118
rectangle, definition of 187
reference books 518
RefreshDesktop 173
register select flags 19
registers 15
renaming files 342343
REP instruction 19-20, 44
reply record 363-364, 367
Reset function 79
Reset interrupts 37, 39
RestoreHandle 110, 113-114, 115
return address 26
RGB video port 7
ROL instruction 29
ROM disk 7, 110
ROM expansion 102, 110
ROM space 2
root directory 330

5332 Index

ROR instruction 29
RTI instruction 38-39

516 files 50

sampling rate 395

SANE 71

scanline control byte 163-164, 167
SCB see scanline control byte
SCC see 8530 serial communications
controller

SchAddTask 361
Scheduler 71, 361

Scrap Manager 73

scroll arrow 169

scroll bars 169, 175-176, 178, 275-276
selecting a filename 362
SelectWindow 181,-185
SellText 281-282
semitone 408

SEP instruction 19-20, 44
serial ports 3, 449
SetAlISCBs 167
SetBackColor 197, 201
SetBackPat 185-189, 203
SetBarColors 256
SetColorEntry 166
SetColorTable 167
SetContentDraw 151
SetContentOrigin 151
SetCursor 141, 143
SetDataSize 181
SetDefButton 281
SetDefProc 181
SetDItemBox 281
SetDItemType 281
SetDItemValue 281, 283
SetErrGlobals 437
SetErrorDevice 438
SetFontFlags 197
SetForeColor 197, 201-202
SetFrameColor 181
SetFullRect 181
SetHandleSize 120
SetInfoDraw 181
SetInfoRefCon 181
SetInGlobals 437

SetlnputDevice 438
SetlText 281-282
SetMaxGrow 151
SetMenuTitle 249
SetMlItem 249, 251
SetMItemMark 252
SetMItemName 249-250
SetMItemStyle 252
SetOrigin 171, 177, 180, 204
SetOutGlobals 437
SetOutputDevice 435
SetPage 181

SetPenMask 188, 191
SetPenMode 191
SetPenPat 188, 191, 203
SetPenSize 191
SetPenState 191

SetPort 186

SetPurge 113, 119
SetPurgeAll 119
SetPurgeStat 196

SetsCB 167

SetSeroll 151
SetSolidBackPat 1858-184, 203
SetSolidPenPat 158-189, 203
SetSound MIRQV 402
SetSoundVolume 400-401
SetTextFace 194, 195
SetTextMode 202
SetTSPtr 51, 54
SetUserSoundlRQV 402
SetWAP 84, 127
SetWFrame 1851
SetWRelCon 151
SetWTitle 181

SET_EQOF 347, 353-334
SET_FILE_INFO 342-344
SET_LEVEL 350-351
SET_MARK 347-350
SET_PREFIX 332, 346
SFGetFile 362-365, 367-369
SFShutDown 362
SFStartup 362

shadow register 106
shadowing 106-108

shape drawing 203

shift and rotate 18
instructions 29

ShowCursor 143

ShowDItem 281

ShowWindow 140, 173, 175, 180, 152

ShutDown function 79-50
SizeWindow 185
Slots command 5
soft switches 3, 104
software interrupts 40
SolidPattern 155-189
SONG program 414-415
sound 10
output 3493
output channels 393-394
Sound Control register 3890391
Sound GLU 10
Sound Manager 71, 399 ff.
SoundShutDown 399
SoundStartup 399, 403, 406, 408
source code format 41
comment field 42
comment lines 41
instruction field 41
label field 41
operand field 42
SP register 15, 21, 23
speaker 5, 10, 389, 392
special characters (menu} 244-245
speed 2, 13-14, 22
SRC files 341
stack 14-15, 21, 106
ProDOS 16 44
pulling 15
pushing 15
stack pointer 153, 21, 23
stack addressing mode 33
stack pointer 15, 21, 23

stack relative addressing mode 33-34, 52

stack relative indirect indexed with Y
addressing mode 34

stage bytes 289

Standard File Operations Tool Set
362

STANDARD.ASM program 79-80, 187,

269, 272

Index

START directive 42-43
START program 333-334, 360
StartDrawing 177, 180, 156
Startup function 79-80
static text items 276-277
status flags 1617
Status function 79
status register see processor status
register
StillDown 140
StopAlert 288
storage type code (ProDOS) 341
STR macro 200
string printing 440
StringWidth 201
style word 253
subdirectory 330
subroutines 26
subtraction 20, 27
effect of carry flag 17-18
effect of decimal mode flag 18
super hi-res graphics 162167
colors 9
general description 9
memory usage 105
swap mode 397
switch event 129
SYMBOL directive 47
syne mode 397
SysBeep 389
system font 196, 463
height 190
System Loader 72
memory usage 104
purge level 113
System Monitor 2, 101, 109
system window 312
system-control instructions 28-30
SystemClick 314
SystemEdit 314
SvstemTask 314

Table Size 397-398

TaskMaster 131, 136, 138, 173, 176-179
182-186, 159, 208, 210, 255, 269, 286-

287

534 Index

text color 201-202
text display memory 105
text items
reading values 251-282
selecting a range 282
Text Tool Set 71, 435 ff.
text transfer modes 202
TextReadBlock 440-441
TextReader program 179, 208-210
TextShutDown 435
TextStartup 435
TextWidth 201
TextWriteBlock 439-440
thumb 169
TickCount 145-146
ticks 132, 145-146
time formats 144
TimeTools 84-85
title bar 168-169, 176
TLMountVolume 758-79
TLShutDown 77
effect on RAM-based tools 78
effect on user TPT 85
TLStartup 77, 126
effect on user TPT 85
Tool Locator 68, 77 ff.
tool pointer table 81
tool sets 67-68
errors 74
general description 3
how to use 73-75
in ROM 3
loading them 77-78
structure 79
summary 68, 495 ff.
user-defined 84-85
writing your own 80 ff.
TOOL.SETUP program 332, 495
TotalMem 121
TPT see tool pointer table
TrackGoAway 185
TrackZoom 185
TRB instruction 28-29
TSB instruction 258-29
two's-complement numbers 18-19
TypeList 366-367

Undo 287

UnloadOneTool 78

unlocking 118

update event 125, 129, 140-141
updating windows 178-150
user control items 276

user items 279

USING directive 43

Version function 79

version number (ProDOS 16) 358-359
for prototypes 79

vibrato 408, 413

video bufter 162

video /O 435

video output 443

video RAM 105

voices 10, 392

VOLUME (ProDOS) 345, 355-356

volume (ProDOS) 330
characteristics 345
directory 330-331

volume (audio) 400-401
control 390-391

WaitCursor 143

WaitMouseUp 140

WAPT see Work Area Pointer Table
waveform 392-393, 395, 397, 402
waveform resolution 398

WDM instruction 30

widMax 197

Window Manager 72, 161 ff.
window 161, 168 ff.
changing properties 150
creating 173
events 129
mouse activity in 183 ff.
record 170
removing 182
text screen 445449
title 177
WindShutDown 173
WindStartup 173

Work Area Pointer Table 68, 79, 84, 127

WRITE 351-352 .
WriteChar 439
WriteCString 439-440
WriteLine 439—440
WriteRamBlock 400, 407
WriteString 439—440
WRITE_BLOCK 356
writing files 351-352

x Hag 19-20

X register 20

XBA instruction 20, 25
XCE instruction 19, 25
Y register 20

zero flag 18

zoom box 169, 175, 177, 185

ZoomWindow 185

Index

235

Program Disk for

Exploring the Apple IIGS
by Gary B. Little

All of the programs listed in this book are available on disk, in source code form,
directly from the author. The disk also contains several other programs, including some
useful desk accessories and a program to display and print screen image files.

TO ORDER the disk, simply clip or photocopy this entire page and complete the
coupon below. Enclose a check or money order for $20.00 in U.S. funds. (California
residents add applicable state sales tax.)

MAIL TO: GARY B. LITTLE
1925 Bayview Avenue
Belmont, CA 94002

Please send me:

(quantity) Disks to accompany Exploring the Apple 1IGs, by Gary B. Little, at
$20.00 each.

Check enclosed.

YOUR SIGNATURE:

Name: Title:

Company (if applicable):

Address:

City: State: Zip:

>$c2c.95 FPTUSA

GARY B. LITTLE v¥ Addison-Wesley Publishing Company

EXPLORING
THE APPLE ligs*

Best-selling author Gary B. Little reveals the
power of the amazing new Apple ligs

The Apple lics"is the sophisticated new member of the Apple’ Ii family of
computers with outstanding color graphics and sound capabilities. It features
a powerful 16-bit, 65816 microprocessor, custom sound and graphics chips, an
enhanced operating system called ProDOS" 16, and a Macintosh “-like Toolbox
of programming tools to help programmers easily create windows, pull-down
menus, dialog boxes, and other user interface components.

Now Gary B. Little, the author of the acclaimed Inside the Apple lle and Inside
the Apple lic has written an in-depth, technical introduction to the inner work-
ings of the Apple llcs. Written for all assembly language and Applesoft BASIC pro-
grammers, Exploring the Apple lics is a detailed study of how the Apple lics is
built and how it works.

Little provides thorough discussions of:

the architecture and capabilities of the 65816 microprocessor
software development environments and utilities

the Apple lics Programmer’s Workshop

file management with ProDOS 16

memory map and memory management

using Super Hi-Res graphics

event handling

using the Apple lics Toolbox

- L] L] L] . L] L] L]

Little’s easy-to-read style makes the intricacies of programming the Apple llgs
readily accessible. He analyzes all the major functions a programmer will have to
know and shows how to assemble them into a complete application. Each chapter
features extensive examples of program code. Exploring the Apple liGs is the
ideal guide to learning to program the exciting Apple lics.

Gary B. Little is a well-known author, columnist, and software developer. He is a
leading authority on the Apple Il family of computers. His books include the best-
selling Inside the Apple lle, Inside the Apple lic, and Apple ProDOS: Advanced
Features for Programmers. Gary is the developer of the Point-to-Point commu-
nications program and he is also a Contributing Editor for A + Magazine. He prac-
tices computer law in Vancouver, British Columbia.

Cover design by Doliber Skeffington ISBN 0-201-15539-7

